
Soft-ICE/W Reference Guide

Version 1.1

By Nu-Mega Technologies, Inc
P.O. Box 7780
Nashua, NH 03060-7780
(603)889-2386
FAX (603)889-1135
BBS (603)595-0386

- READ THIS BEFORE USING SOFT-ICE/W -

Please read this license carefully. If you do not agree to all of the terms and conditions,
immediately return the Software, manuals and any partial or whole copies to the party from
whom you received it for a full refund. Upon opening the packaging and / or using the
Software, Nu-Mega will assume that you have agreed to be bound by this License.

Grant of License. Nu-Mega Technologies, Inc. ("Nu-Mega"), grants Licensee the limited
rights to possess and use the Software, only on the terms and conditions specifically set out in
this License. Licensee acknowledges its acceptance of this License by opening the Software
package or by any use of the Software.

Term. This License is effective as of the time the Licensee receives Software, and shall
continue in effect until Licensee ceases all use of Software and returns or destroys all copies
thereof, or until automatically terminated upon the failure of Licensee to comply with any of
the terms of this License.

Your Agreement. Licensee agrees that, at any one time,

Software will be installed on a single network server, solely for Licensee's internal
purposes. If the Software is installed on a network with multiple servers, Licensee agrees
to provide technical or procedural methods to prevent use of Software on more than one
network server.

One copy of Software may be made for BACK-UP PURPOSES ONLY, and the copy shall
display all proprietary notices, and be labeled externally to show that the back-up copy is the
property of Nu-Mega, and that use is subject to this License. Documentation may not be
copied. Use of the Software by any department, agency or other entity of the U.S. Federal
Government is limited by the terms of the attached "Rider for Governmental Entity Users",
which is incorporated by reference into this License.

Licensee may transfer its rights under this License, PROVIDED that the party to whom such
rights are transferred agrees to the terms and conditions of this License, and written notice is
provided to Nu-Mega. Upon such transfer, Licensee must transfer or destroy all copies of the
Software. Except as expressly provided in this License, Licensee may not use, copy,
disseminate, modify, distribute, sub-license, sell, rent, lease, lend, give or in any other way
transfer, by any means or in any medium, the licensed Software. Licensee understands and
agrees that the Software is the valuable property of Nu-Mega, and is protected by the laws of
copyright, trade secret and contract. Licensee will use its best efforts and take all reasonable
steps to protect the licensed Software from unauthorized use, copying or dissemination, and
will maintain all proprietary notices intact.

LIMITED WARRANTY. Nu-Mega warrants the Software media to be free of defects in
workmanship for a period of thirty days from purchase. During this period Nu-Mega will
replace at no cost any such media returned to Nu-Mega, postage prepaid. This service is Nu-
Mega's sole liability under this warranty.

Disclaimer. License fees for the Software do not include any assumption of risk by Nu-Mega,
and Nu-Mega disclaims any and all liability for incidental or consequential damages arising

ii Soft-ICE/W Reference Guide

out of the use or operation or inability to use the Software, or arising from the negligence of
Nu-Mega or its employees, officers, directors, consultants or dealers, even if any of these
parties have been advised of the possibility of such damages. Furthermore, Licensee
Indemnifies and agrees to hold Nu-Mega harmless from such claims. THE ENTIRE RISK AS
TO THE RESULTS AND PERFORMANCE OF THE SOFTWARE IS ASSUMED BY THE
LICENSEE. THE WARRANTIES EXPRESSED IN THIS LICENSE ARE THE ONLY
WARRANTIES MADE BY NU-MEGA AND ARE IN LIEU OF ALL OTHER
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A
PARTICULAR PURPOSE.

General. This License is the complete and exclusive statement of the parties' agreement.
Should any provision of this License be held to be invalid by any court of competent
jurisdiction, that provision will be enforced to the maximum extent permissible, and the
remainder of the License shall nonetheless remain in full force and effect. This License shall
be controlled by the laws of the State of New Hampshire.

Rider For Governmental Entity Users
This is a Rider to the Nu-Mega License Agreement, and shall take precedence over the License

where a conflict occurs.

1. The Software: was developed at private expense; no portions were developed with
government funds; is a trade secret of Nu-Mega for all purposes of the Freedom of Information
Act; is "commercial computer software" subject to limited utilization as provided in any
contract between the vendor and the government entity; and in all respects is proprietary data
belonging solely to Nu-Mega.

2. For units of the DoD, the Software is sold only with "Restricted Rights" as that term is
defined in the DoD Supplement to FAR 52.227-7013 (b)(3)(ii), and use, duplication or
disclosure is subject to restrictions set forth in subdivision (b)(3)(ii) of the Rights in Technical
Data and Computer Software clause at 52.227-7013. Manufacturer: Nu-Mega Technologies,
Inc., P.O. Box 7780, Nashua, NH 03060-7780.

3. If the Software was acquired under a GSA Schedule, the Government has agreed to refrain
from changing or removing any insignia or lettering from the Software or Documentation or
from producing copies of manuals or disks (except for backup purposes) and; (1) Title to and
ownership of the Software and Documentation and any reproductions thereof shall remain with
Nu-Mega; (2) use of the Software shall be limited to the facility for which it is acquired; and
(3) if the use of the Software is discontinued at the original installation and the Government
wishes to use it at another location, it may do so by giving prior written notice to Nu-Mega,
specifying the new location site and class of computer.

4. Government personnel using the Software, other than under a DoD contract or GSA
Schedule, are hereby on notice that use of the Software is subject to restrictions that are the
same or similar to those specified above.

Soft-ICE/W Reference Guide iii

The following trade names are referenced throughout this
manual:

Soft-ICE/W, Soft-ICE and Nu-Mega are trademarks of Nu-
Mega Technologies, Inc.

Windows, CodeView, and CodeView for Windows are
registered trademarks of Microsoft Corporation.

Turbo Debugger is a trademark of Borland.

Multiscope Debugger for Windows is a trademark of
Multiscope.

Watcom is a trademark of Watcom Corporation.

Metaware is a trademark of Metaware Corporation.

QEMM is a trademark of Quarterdeck Office Systems.

386MAX is a trademark of Qualitas.

iv Soft-ICE/W Reference Guide

Table Of Contents

µChapter 1 Introduction
1.1 Product Description..2
1.2 Product Philosophy..3
1.3 Soft-ICE/W Diskette..4
1.4 Soft-ICE/W Requirements...................................5
1.5 Soft-ICE/W Installation..6
1.6 Loading Soft-ICE/W..7
1.7 WINICE.DAT Initialization File.......................15

Chapter 2 User Interface
2.1 Soft-ICE/W Screen...22
2.2 Register Window..23
2.3 Watch Window...25
2.4 Data Window..26
2.5 Code Window...29
2.6 Command Window...33
2.7 Command Syntax...37
2.8 Notational Conventions Used in this Manual.....42

Chapter 3 Using Soft-ICE/W
3.1 Experimenting with Soft-ICE/W........................45
3.2 Loading Systems Level Symbols.......................46
3.3 Loading Programs for Debugging......................47
3.4 Debugging a Program at Source Level..............54
3.5 Debugging a DOS T&SR in a Virtual Machine.59
3.6 Debugging a DOS Loadable Device Driver.......61

Soft-ICE/W Reference Guide v

3.7 Hints for System Level Debugging in DOS VMs63
3.8 Debugging a Windows Device Driver...............63
3.9 Debugging a Windows VxD..............................65
3.10 Debugging Multiple Programs At Once...........66
3.11 Exploring Windows Internals with Soft-ICE/W67
3.12 Memory Addresses in Windows......................74

Chapter 4 Using Break Points Commands
4.1 Introduction..82
4.2 Setting Break Points...83
4.3 Back Trace Ranges...104
4.4 Manipulating Break Points...............................110

Chapter 5 Using Other Commands
5.1 Display and Edit Commands.............................120
5.2 Display System Information Commands.........140
5.3 I/O Port Commands..183
5.4 Transfer Control Commands............................186
5.5 Debug Mode Commands..................................198
5.6 Utility Commands..205
5.7 Windowing Commands....................................213
5.8 Debugger Customization Commands...............223
5.9 Screen Control Commands...............................245
5.10 Back Trace History Commands......................250
5.11 Symbol and Source Line Commands..............259

APPENDIX A
Running Soft-ICE/W and Soft-ICE for DOS together.275

APPENDIX B
vi Soft-ICE/W Reference Guide

Using Soft-ICE/W with the Windows Debugging
Kernels...277

APPENDIX C
TROUBLESHOOTING GUIDE.............................279

APPENDIX D
ERROR MESSAGES..285

APPENDIX E
Alphabetical Command List....................................295

APPENDIX F
Functional Command List.......................................299

INDEX

Soft-ICE/W Reference Guide vii

Chapter 1 Introduction

Chapter 1 Introduction

µ1.1 Product Description..2
1.2 Product Philosophy..3
1.3 Soft-ICE/W Diskette..4
1.4 Soft-ICE/W Requirements...................................5
1.5 Soft-ICE/W Installation..6
1.6 Loading Soft-ICE/W..7

1.6.1 Using a Second Monitor for Output.........10
1.6.2 Running Soft-ICE/W on a Second
Computer..11
1.6.3 Using a CGA, EGA or Super-VGA
Controller...12
1.6.4 Alternatives if VIDMODE.EXE Fails.....14

1.7 WINICE.DAT Initialization File.......................15
1.7.1 Defining Function Keys...........................16
1.7.2 The Soft-ICE/W Initialization String.......17
1.7.3 Allocating Extra Memory........................18
1.7.4 Pre-loading Symbols and Source Files....18
1.7.5 Default WINICE.DAT Initialization File 19

Soft-ICE/W Reference Guide 1

Chapter 1 Introduction

1.1 Product Description

XE "Soft-ICE/W:description"§Soft-ICE/W is a powerful, low-
level debugger that runs under Windows 3.0 and Windows 3.1
in enhanced mode. It can be used to debug anything running
in the Windows environment, including Windows applications,
Windows device drivers and Windows virtual device drivers.
It can also debug any DOS software running in Windows
virtual machines, including applications, drivers and T&SR's.
Soft-ICE/W is based on Nu-Mega's MS-DOS Soft-ICE product
and contains many of the same commands and features. Some
of the major features of Soft-ICE/W are listed below:

 • source level debugging of Windows applications,
Windows device drivers, Windows VxD's, DOS
applications, DOS T&SR's, DOS loadable drivers.

 • real time break points on memory reads/writes,
port reads/writes, memory ranges, and
interrupts.

 • break points on Windows messages.

 • back trace history ranges.

 • full screen windowed user interface.

 • the ability to display internal Windows
information including VxD map, Windows
heap, local heap, exports from Windows USER,
GDI and KERNEL, etc.

Chapter 1 Introduction

 • a window that can pop up at any time.

 • the ability to debug any code, including the
Windows kernel itself.

 • user-friendly dynamic help.

 • the ability to watch variables and multiple data
windows.

 • programmable function keys.

Soft-ICE/W itself is an .EXE file that is loaded before
enhanced Windows. It in turn automatically loads Windows.

1.2 Product Philosophy

Soft-ICE/W was designed to debug any Windows code while
in enhanced mode. This includes debugging in interrupt
routines, through processor level changes, through I/O drivers
and in other complex areas. While in design and development,
special emphasis was placed on the Soft-ICE/W break point
capabilities. Not only are hardware-like break points provided,
but Soft-ICE/W break points follow the memory as windows
discards, re-loads and swaps memory. This is something that
hardware debuggers do not do.

The Soft-ICE/W user interface was designed to be functional
without compromising system robustness. To prevent re-
entrance problems with Windows, Soft-ICE/W must access the
hardware directly to perform its I/O. In order to still use the
hardware on your PC for I/O (screen and keyboard) we had to

Chapter 1 Introduction

Chapter 1 Introduction

be very cautious in our design decisions. Because of this we
have had to forgo features that we would have liked to include.
These include use of graphics mode for the display, use of the
mouse while in the debugger and use of the file system to page
source in and out dynamically.

Since we were restricted to character mode (for the above
reasons), we minimized the annoying flash associated with
character mode debuggers. While debugging Windows
programs, Soft-ICE/W only flashes when a routine is actually
displaying information to the screen.

1.3 Soft-ICE/W Diskette

XE "Soft-ICE/W:diskette contents"§XE "Diskette
contents"§Soft-ICE/W is shipped on either a 5 1/4" or a 3 1/2"
diskette. This distribution diskette contains the following files:

WINICE.EXE
WLDR.EXE
SERIAL.EXE
WINICE.DAT
VIDMODE.EXE
MSYM.EXE
WLOG.EXE
ICONS.EXE
UPTIME.EXE
README.SIW
README.HLP
EXAMPLE.MAP
WLDR.HLP
VIDMODE.HLP

Chapter 1 Introduction

WINICE.EXE is the Soft-ICE for Windows executable file.

WLDR.EXE is the program and symbol loader.

SERIAL.EXE runs on a remote PC and is used when
debugging with a serial terminal.

WINICE.DAT is the Soft-ICE/W initialization file.

VIDMODE.EXE configures Soft-ICE/W for CGA, EGA, and
super-VGA video adapters.

MSYM.EXE converts .MAP files into .SYM files for
debugging DOS.COM programs.

WLOG.EXE dumps the Soft-ICE/W command history buffer
to a text file.

ICONS.EXE installs icons for all of the Soft-ICE/W utilities
on a separate program manager menu.

UPTIME.EXE sets the time to that of the real time clock. Run
UPTIME.EXE from the DOS VM.

README.SIW is a text file containing information about
Soft-ICE/W that did not make it into this manual.

README.HLP is the README file in the Windows help
system format. This is accessed by clicking on the question
mark icon from Windows.

Chapter 1 Introduction

Chapter 1 Introduction

EXAMPLE.MAP is a readme file for the esoteric case of
people editing .MAP files to handle source code in include
files.

WLDR.HLP is the WLDR readme file in the Windows help
system format. This is accessed by clicking on the question
mark from WLDR.

VIDMODE.HLP is the VIDMODE readme file in the
Windows help system format. This is accessed by clicking on
the question mark from VIDMODE.

1.4 Soft-ICE/W Requirements

XE "Soft-ICE/W:requirements"§XE "Soft-ICE/W:hardware
requirements"§XE "Software requirements"§XE "Hardware
requirements"§XE "Requirements"§Soft-ICE/W has the
following software and hardware requirements:

• Microsoft Windows version 3.0 or later.

• A PC capable of running Windows in enhanced mode
(a 386 or 486 processor) with at least 256K additional
memory over and above Windows memory
requirements.

• The Soft-ICE/W display can be on a serial
terminal, a secondary monochrome monitor, or
the Windows monitor itself if Windows is run
in CGA, EGA, VGA or most super-VGA
modes. If you have an 8514 monitor with a
VGA as a secondary monitor, Soft-ICE/W can

Chapter 1 Introduction

use the VGA as its alternate display.

Note
Since Soft-ICE/W does not use
the DOS file system, it must
keep all symbols and source in
memory. The actual memory
requirement for Soft-ICE/W
depends on the number of
symbol tables and source files
that will be loaded at once.

1.5 Soft-ICE/W Installation

XE "Soft-ICE/W:install"§XE "Install Soft-ICE/W"§To install
Soft-ICE/W files on your system, copy all of the files from the
distribution diskette to a directory that is on your path.

Run ICONS.EXE from Windows to install the icons for all of
the Soft-ICE/W utilities on a separate program manager menu.

Steps to a quick start:
If you are running Windows with
most standard VGA drivers, you
can simply enter WINICE on the
DOS command line to load Soft-
ICE/W, then refer to chapter 3
for details on using Soft-ICE/W.
(See page 17 for detail on using
Soft-ICE/W with other video
adapters.)

Chapter 1 Introduction

Chapter 1 Introduction

1.6 Loading Soft-ICE/W

XE "Soft-ICE/W:load" \r "SCTLoad§XE "Winice:running" \r
"SCTLoad§XE "Soft-ICE/W:switches" \r "SCTLoad§XE
"Load:Soft-ICE/W" \r "SCTLoad§XE
"Switches:WINICE.EXE" \r "SCTLoad"§Soft-ICE/W must be
loaded from DOS. Soft-ICE/W automatically loads Windows
as the last step in its initialization. From that point on, Soft-
ICE/W remains loaded as a resident debugger until you exit
from Windows.

Instead of typing WIN to run Windows, you simply enter
WINICE to run Windows with Soft-ICE/W resident in the
background.

The full command line syntax for Soft-ICE/W including the
optional parameters and command line switches is:

winice [/HST d] [/tra d] [/sym d] [/load name]
[[path]WIN.COM [WIN-
parameters]]

There are several optional switches that can be specified on the
command line:
XE "hst switch"§XE "Switches:/hst"§XE "Display

history,allocate extra memory for"§
/HST If /HST (history memory) is specified, Soft-ICE/W

will allocate extra memory for the command windows
display history. The number following the /HST
switch is the amount in K of extra memory to allocate.

Chapter 1 Introduction

This number is always entered in decimal. Soft-ICE/W
automatically allocates 8K for the history buffer.
Anything specified by the /HST switch is added to the
8K. Having a large amount of history memory is
especially useful when used in conjunction with the
WLOG utility to dump large amounts of data to a text
file.

XE "tra switch"§XE "Switches:/tra"§XE "Back trace history
buffer:allocate extra memory for"§

/tra If /tra (trace buffer memory) is specified, Soft-ICE/W
will allocate extra memory for the back trace history
buffer. The number following the /tra switch is the
amount in K of extra memory to allocate. This number
is always entered in decimal. Soft-ICE/W
automatically allocates 8K for the back trace history
buffer. Anything specified by the /tra switch is added
to the 8K.

XE "sym switch"§XE "Switches:/sym"§XE "Symbols:allocate
memory for"§XE "Source:allocate memory for"§

/sym If /sym (symbol table memory) is specified, Soft-
ICE/W will allocate memory for source and symbols.
The number following the /sym switch is the amount in
K of memory to allocate. This number is always
entered in decimal. Soft-ICE/W automatically allocates
0K for symbol table memory.

XE "Load:switch"§XE "Switches:/load"§XE "Symbols:pre-
loading"§

/load If /load (pre-load symbol tables and source files) is
specified, Soft-ICE/W will pre-load the symbol table
and referenced source files from the specified program
file. The name following the /load switch should be
the complete path and file name to a program that

Chapter 1 Introduction

Chapter 1 Introduction

contains a symbol table. This switch is most useful
when debugging Windows drivers, Windows DLL's,
VxDs, DOS loadable drivers or DOS T&SRs. Symbol
information for all other types of programs is loaded
with WLDR.EXE.

XE "Loadx switch"§XE "Switches:/loadx"§
/loadx The /loadx switch is the same as the

/load switch except just symbols are
loaded, not source files.

XE "Exp switch"§XE "Switches:/exp"§XE "Exports, add to
list"§

/exp Adds exports from a specified DLL or
Windows application to the Soft-ICE/W
export list. This allows you to
symbolically access these exported
symbols.

Note
All of the above switches can
also be specified in the
WINICE.DAT file so they do not
have to be repeatedly given on
the command line. The /HST,
/SYM and /TRA switches on the
command line override whatever
is in the WINICE.DAT file.

All memory required is allocated from extended memory via
XMS calls.

After any desired switches are specified, you may also specify

Chapter 1 Introduction

a full path and file name where WIN.COM is located. If the
file name WIN.COM is specified with no path, WINICE will
search all the default paths. WIN-parameters is the command
line that is passed to WIN.COM. These fields are optional.
They should only be used if you wish to load WIN.COM from
an alternate directory, or if you wish to pass parameters to
Windows.

After WINICE.EXE is loaded, it will load Windows by
executing WIN.COM. Soft-ICE/W will look in the current
directory and then search the default paths for the WIN.COM
file, unless a full path-file-name is specified after the WINICE
switches.

Once WIN.COM is loaded, Soft-ICE/W remains in the
background until activated by either a key sequence (initially
Ctrl D), a break point, a fault, or by an INT 1 or INT 3 if
I1HERE or I3HERE mode is turned on.

Soft-ICE/W can also pop up after WIN.COM is loaded if the X
command is removed from the INIT statement in the
WINICE.DAT file. Doing this allows you to begin debugging
before your VxD init code is executed. Soft-ICE/W will pop
up immediately after switching to protected mode. At this
point, no VxD's have been run or initialized, just loaded. This
includes the Windows Virtual Machine Monitor (VMM) itself.

1.6.1 Using a Second Monitor for Output

XE "Second:monitor"§XE "Display:output on second
monitor"§Soft-ICE/W is able to display its output on a

Chapter 1 Introduction

Chapter 1 Introduction

monochrome monitor separate from the Windows display. To
make Soft-ICE/W display its output on this second monitor,
you place the ALTSCR ON command in the INIT string of
your WINICE.DAT file. This causes all Soft-ICE/W screen
output to be redirected to the second monitor. If no second
monitor is found, then Soft-ICE/W will not output anything.
ALTSCR will only display in 25 line mode. If you are
currently using 43 or 50 line mode, Soft-ICE/W will
automatically switch to 25 line mode before switching to the
second monitor.

If you wish Soft-ICE/W output to switch back to the Windows
display, enter ALTSCR OFF from the Soft-ICE/W command
window.

An example INIT string that will enable a monochrome
second monitor is:

INIT "ALTSCR ON; X;"

See page Error: Reference source not found for a complete
description of the ALTSCR command.

Note
ALTSCR ON can also be
entered from the Soft-ICE/W
command window if you wish to
switch Soft-ICE/W output to
your second monitor.

Chapter 1 Introduction

XE "8514 monitor"§
Note

 If you have an 8514 monitor
with a VGA as a secondary
monitor, Soft-ICE/W can use the
VGA as its alternate display. To
do this ALTSCR should be
OFF. Unlike a monochrome
monitor, the Soft-ICE/W output
will only be displayed when
Soft-ICE/W is popped up.

1.6.2 Running Soft-ICE/W on a Second Computer

XE "Second:computer"§XE "Run Soft-ICE/W on second
computer"§XE "Soft-ICE/W:run on second computer"§To run
Soft-ICE/W from a second computer, you will need a second
IBM-compatible PC running MSDOS. Any PC will do,
including 8088, 8086 or 80286 machines. You must first
attach the computer to your Windows computer with a null
modem cable attached to the two serial ports. Then run the
SERIAL.EXE utility on the second PC. You must also place
the SERIAL ON command in the WINICE.DAT INIT
statement. SERIAL is only supported in 25-line mode. If
you are currently using 43- or 50-line mode, Soft-ICE/W will
automatically switch to 25-line mode before switching to the
second terminal.

You must also place the COMn keyword on a separate line in
the WINICE.DAT file to reserve a specific COM port for the
serial connection. "n" is a number between 1 and 4

Chapter 1 Introduction

Chapter 1 Introduction

representing the COM port. If this statement is not present in
WINICE.DAT, then you must pop Soft-ICE/W up from the
keyboard on the Soft-ICE/W machine, not the second PC.

The following example will tell the second machine to use
COM1 at 19200 baud, and tell Soft-ICE/W to switch its
display to a serial terminal on COM1 at 19200 baud. Type:

SERIAL ON 19200 (on the second PC)

SERIAL ON 19200 (on the Soft-ICE/W machine)

See page Error: Reference source not found for a
complete description of the SERIAL command and the
SERIAL.EXE utility.

1.6.3 Using a CGA, EGA or Super-VGA Controller

XE "VIDMODE.EXE"§XE "WINICE.VID"§XE "CGA
controller"§XE "EGA controller"§XE "Super-VGA
controller"§Soft-ICE/W defaults to standard VGA when
installed. Since Soft-ICE/W does not use Windows or the
Windows display driver for output, it must access the video
display hardware directly.

With super-VGA there is no true standard at the hardware
level. The VIDMODE.EXE utility is a Windows program that
attempts to determine the hardware characteristics of a super-
VGA or EGA controller.

The VIDMODE utility does not work with all adapter cards,

Chapter 1 Introduction

but it is a general purpose solution that works with most
adapters.

If you wish to use Soft-ICE/W on a CGA, EGA, or super-VGA
controller, then you can try using the VIDMODE utility. This
utility is a Windows program that must be run while Soft-
ICE/W is resident. VIDMODE forces Windows to switch to
character mode and then back to graphics mode. During these
two mode switching operations, I/O to the video adapter is
recorded and written to a file named WINICE.VID.

The next time you run Soft-ICE/W, this file is loaded into
memory and the I/O is played back to the controller when Soft-
ICE/W pops up.

VIDMODE has three options: standard, graphics to character
and character to graphics. The default is standard and should
be tried first. If the standard option fails, you can run
VIDMODE again, this time checking the boxes for the other
options.

If VIDMODE does not get back to graphics mode properly
when run with the default options (no boxes checked), then it
will not work with any other option either. See the next
section for alternatives.

To run VIDMODE you must do the following:

• Run Soft-ICE/W from command line by
entering WINICE.

• Select the VIDMODE icon or select File
followed by Run from the Windows program
manager. Then enter drive:path-name\

Chapter 1 Introduction

Chapter 1 Introduction

VIDMODE.EXE.
• Check the desired VIDMODE check boxes,

then select OK.

Warning
When either of VIDMODE's
check boxes are checked, there is
a danger that VIDMODE will
hang Windows. Take care to
shut down any Windows
applications with work in
progress before running
VIDMODE with boxes checked.

VIDMODE writes a file named WINICE.VID to the directory
that WINICE.EXE was loaded from. This file contains data
necessary for Soft-ICE/W to work with your video controller.
The next time you run Soft-ICE/W, it will read the information
from the WINICE.VID and use those video parameters.

The Windows screen may become momentarily corrupted for a
few seconds from the time the winice.vid file is processed until
Windows actually comes up.

Note
You must run VIDMODE.EXE
each time you reconfigure
Windows to a different VGA
mode.

Chapter 1 Introduction

1.6.4 Alternatives if VIDMODE.EXE Fails

Some VGA video adapters and some device drivers will not
work with the methods implemented in VIDMODE.EXE.
Here are some alternative steps to try.

1. Delete WINICE.VID from your Soft-ICE/W directory.
Soft-ICE/W will automatically try to use this file if it
exists.

2. Make sure you do not have a memory manager option
installed that 'hides' portions of the VGA BIOS. These
include stealth mode in QEMM and VGA XXXXXXX
XXX in 386MAX.

3. If you have been using a super VGA video mode, try
installing the standard VGA driver for your adapter. If
this works, you are done. If not, try running
VIDMODE.EXE after installing this driver. If this doesn't
help, go to the next step.

4. Delete WINICE.VID again, then try installing the
Windows VGA driver VGA30.DRV. This is a simpler
VGA driver that will often work when Soft-ICE/W fails to
pop up with the standard driver. Again, if this doesn't
work, run VIDMODE.EXE after installing this driver.

5. Check the /VID directory on the Soft-ICE/W for a .VID
file that corresponds to your video board. For a
description of these .VID files, select the help button in
VIDMODE.EXE.

Chapter 1 Introduction

Chapter 1 Introduction

6. If the above steps fail, you must run Soft-ICE/W on a
separate monochrome monitor or through a second
computer attached through a serial connection.

Note
For the benefit of experienced
display driver developers, we
have included utilities to convert
a .VID file to ASCII, and to
convert the ASCII file back to
the .VID format. These utilities
(A2V.EXE & V2A.EXE) can be
used by one with VGA expertise
at the port level to edit the output
from VIDMODE.EXE.

1.7 WINICE.DAT Initialization File

XE "WINICE.DAT" \r "SCTInitFile"§XE "Initialization:file" \
r "SCTInitFile"§XE "Soft-ICE/W:initialization file" \r
"SCTInitFile"§XE "Initialization:keywords"§When Soft-
ICE/W is first loaded, it pops up its screen and reads
information from the WINICE.DAT initialization file located
in the same drive and directory as the WINICE.EXE file. This
file is used to specify initialization and customization
parameters including the initial programming of the function
keys and to specify a string of commands that will be executed
immediately.

WINICE.DAT is an ASCII text file where each line is of the
following format:

Chapter 1 Introduction

keyword = string

Valid keywords are the function keys F1-F12, SF1-SF12,
CF1-CF12, AF1-AF12 and the keywords INIT,
LOAD, LOADX, EXP, TRA, SYM and HST. The
meaning of string changes depending on the keyword.
For the function keys and the INIT keyword, string is a
list of one or more Soft-ICE/W commands within
quotes. For the TRA, SYM and HST keywords, string
is a decimal number that specifies the amount of
memory in K to allocate. For the LOAD, LOADX
and EXP keywords, string is the full path, file name
and extension of a program file that contains a symbol
table, or exports in the case of EXP .

All of the above keywords have corresponding command line
switches. For a complete description of these keywords and
their corresponding switches see section " Loading Soft-
ICE/W" on page 8.

There are two additional keywords that are not followed by a
string and do not have corresponding command line switches.
These keywords are COMn and NOLEDS.

The COMn keyword tells Soft_ICE/W which COM port to
reserve for a serial terminal connection. The "n" is replaced by
a number between 1 and 4, for example, COM1.

NOLEDS is a special keyword that is used on some computers
that have keyboards that cause Soft-ICE/W to hang when it
pops up. Placing the NOLEDS keyword in WINICE.DAT
will eliminate this problem, but has the side effect of disabling

Chapter 1 Introduction

Chapter 1 Introduction

the keyboard LED indicators from toggling while in Soft-
ICE/W.

1.7.1 Defining Function Keys

XE "Function keys:define"§XE "Define:function keys"§You
can assign values to function keys by placing commands in the
WINICE.DAT initialization file. A command string can be
assigned to any of the 12 function keys or key combinations
involving Shift, Ctrl or Alt pressed with a function key. The
format of a function key definition is one of the following:

Fn = "string" Defines function key n
SFn = "string" Defines Shift + function key n
CFn = "string" Defines Ctrl + function key n
AFn = "string" Defines Alt + function key n

n Decimal number from 1 to 12.

string One or more Soft-ICE/W
commands within quotes. A ';'
embedded in the command string
represents the Enter key. Putting
the '^' in front of a command
makes the command invisible.

An example of each type of function key definition follows:

F1 = "H;"
SF3 = "^FORMAT;"

Chapter 1 Introduction

CF11 = "SHOW B;"
AF5 = "CLS;"

If these function key definitions are put in your WINICE.DAT
initialization file, the following actions will occur when Soft-
ICE/W pops up. Pressing F1 will display help information
about all the Soft-ICE/W commands in the command window.
Pressing Shift and F3 together will toggle the display format
in the data window. Pressing Ctrl and F11 together will
begin displaying from the back trace history buffer starting
with the oldest instruction in the buffer. Pressing Alt and F5
together will clear the Soft-ICE/W command window and all
display history.

1.7.2 The Soft-ICE/W Initialization String

XE "Initialization:define string"§XE "Define:INIT
statement"§XE "INIT statement"§XE "Alternate:key
sequence"§Soft-ICE/W has a provision to execute a series of
commands at initialization time. This is useful for altering the
Ctrl D hot key sequence that pops up Soft-ICE/W, or for
changing the Soft-ICE/W window sizes. If you will be using a
secondary monochrome monitor or using Soft-ICE/W from a
remote computer you must insert the ALTSCR ON or
SERIAL ON commands in the initialization string. See the
complete description of each command (pages Error:
Reference source not found and Error: Reference source not
found respectively) before placing it in the string. An
example of an initialization string is:

INIT = "ALTSCR ON; ALTKEY ALT Z; WR; X;"

Chapter 1 Introduction

Chapter 1 Introduction

This initialization string will switch the Soft-ICE/W output to a
secondary monochrome monitor, change the hot key sequence
to Alt Z , toggle the register window off, and exit from Soft-
ICE/W.

Note
Always place new items in the
INIT statement prior to the X;.
The X; exits from Soft-ICE/W,
and if the entries are made after
X;, they will not be executed
until you pop up Soft-ICE/W for
the first time.

1.7.3 Allocating Extra Memory

XE "Allocate extra memory"§XE "Extra
memory,allocate"§You can allocate extra memory for the
command window display history, the back trace history
buffer, and for source and symbols. Do this by specifying the
HST, TRA, or SYM statements in the WINICE.DAT
initialization file, in the form HST = d. See "Loading Soft-
ICE/W" on page 8 for more details on these statements.

1.7.4 Pre-loading Symbols and Source Files

XE "Pre-loading symbols and source files"§XE "Source
file:pre-load"§XE "Symbols:pre-loading"§XE "LOAD

Chapter 1 Introduction

statement"§XE "LOADX statement"§Specifying a LOAD
statement in the WINICE.DAT initialization file lets you pre-
load symbol tables and source files for programs that you will
later debug. This is especially useful for VxD's, Windows
drivers, Windows DLL's, DOS loadable drivers and T&SRs.
You must specify the complete path and file name of the
program file that contains symbolic information. Specifying
the LOADX statement allows you to load symbol tables
without loading source files.

When a symbol table is loaded with a LOAD statement, the
symbol segment values are not always adjusted to the right
location. If you have loaded a symbol table for a DOS
program, T&SR or loadable driver, you must use the
SYMLOC command to locate the segment addresses.

If you have preloaded a symbol table for a Windows program
or DLL, the segments will be automatically located when the
Windows program or DLL is loaded. Before the program or
DLL is loaded, the segments of the symbols are ordinal
numbers.

See "Loading Soft-ICE/W" on page 8 for more details on the
LOAD statement.

1.7.5 Default WINICE.DAT Initialization File

XE "WINICE.DAT:default initialization file"§XE
"Initialization:file,default contents"§XE "Default:initialization
file"§XE "Function keys:default assignments"§XE
"Default:function keys"§XE "Soft-ICE/W:default function

Chapter 1 Introduction

Chapter 1 Introduction

keys"§XE "Windows:internal components symbols"§
The WINICE.DAT initialization file found on the release
diskette defines the default settings for functions keys as well
as a list of LOAD and EXP statements that are commented out.
If UN-commented, these statements will load symbol tables for
Windows internal components. The .SYM files loaded by
these statements come with the Microsoft Windows SDK.

The default function key assignments emulate the function key
actions done by CodeView. The default WINICE.DAT
initialization file is provided below:

F1 = "H;"
F2 = "^WR;"
F3 = "^SRC;"
F4 = "^RS;"
F5 = "^X;"
F6 = "^EC;"
F7 = "^HERE;"
F8 = "^T;"
F9 = "^BPX;"
F10 = "^P;"
F11 = "^G @SS:ESP;"
F12 = "^DATA;"

SF3 = "^FORMAT;"

CF8 = "^XT;"
CF9 = "TRACE OFF;"
CF10 = "^XP;"
CF11 = "SHOW B;"
CF12 = "TRACE B;"

Chapter 1 Introduction

AF1 = "^WR;"
AF2 = "^WD;"
AF3 = "^WC;"
AF4 = "^WW;"
AF5 = "CLS;"
AF8 = "^XT R;"

INIT = "X;"

A ';' embedded in the command string represents the Enter key.
Putting the '^' in front of a command makes the command
invisible, so the command will not be echoed to the command
window.

Note
You must alter the default
WINICE.DAT file if you will be
using a secondary monochrome
monitor, or a second computer
attached by a serial cable, as your
Soft-ICE/W display.

Chapter 1 Introduction

Chapter 2 User Interface

Chapter 2 User Interface

µ2.1 Soft-ICE/W Screen..22
2.2 Register Window..23
2.3 Watch Window...25
2.4 Data Window..26
2.5 Code Window...29
2.6 Command Window...33

2.6.1 Line Editing..33
2.6.2 Command History....................................34
2.6.3 Information Display.................................35
2.6.4 Display History..35
2.6.5 Help Line..36
2.6.6 Command Completion.............................37
2.6.7 Function Keys..37

2.7 Command Syntax...37
2.8 Notational Conventions Used in this Manual.....42

Chapter 2 User Interface

2.1 Soft-ICE/W Screen

XE "Soft-ICE/W:windows" \r "SCTWindows"§XE "Soft-
ICE/W:screen" \r "SCTWindows"§XE "Windows of Soft-
ICE/W" \r "SCTWindows"§XE "Screen,Soft-ICE/W" \r
"SCTWindows"§Soft-ICE/W provides a full-screen windowed
interface for debugging. There can be up to five windows
displayed within the screen at one time:

Register Window Display/Edit the current state of the
registers and flags.

Watch Window Display the value of any
variables that are being
watched with the
WATCH command.

Data Window Display/Edit memory.

Code Window Display unassembled instructions
and/or source code.

Command Window Enter user commands and
display information.

The Soft-ICE/W windows are tiled windows and can be sized
and removed. The key sequence Ctrl D is the initial
hot key sequence that will pop up and pop down the
Soft-ICE/W screen. This hot key sequence can be
changed with the ALTKEY command. A detailed

Chapter 2 User Interface

description of the function and control of each window
is given in the following sections.

If you want to see more lines per screen, you can use the
LINES command to switch to 43 (or 50 lines on VGA cards)
per screen instead of the standard 25 lines.

When the Soft-ICE/W screen is displayed, all background
activity on your computer comes to a halt. All interrupts are
disabled and Soft-ICE/W does all screen and keyboard I/O by
directly accessing the hardware.

When Soft-ICE/W pops up, the reason for the popup is
displayed. The only time a reason is not displayed is for the T
and P commands.

2.2 Register Window

XE "Register window" \r "SCTRegWin"§XE
"Window:register" \r "SCTRegWin"§XE "Registers:edit" \r
"SCTRegWin"§XE "Registers:display" \r "SCTRegWin"§XE
"Edit:register window" \r "SCTRegWin"§XE "Display:register
window" \r "SCTRegWin"§The register window always
contains three lines and displays the current value of the
system registers and flags. The following registers are
displayed:

EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP, EIP.
CS, DS, SS, ES, FS, GS.

For the 15 registers, Soft-ICE/W highlights the registers that
have been altered. This is done for the T, P and G

Chapter 2 User Interface

commands. This feature is useful for seeing what
registers have been altered by a procedure call.

XE "Flags,display or change"§XE "Edit:flags"§XE
"Display:flags"§
The second line of the register window also contains the flags.
A flag whose value is 0 is displayed as a lower case letter with
a normal video attribute. A flag whose value is 1 is displayed
as an upper case highlighted letter. The following flags are
displayed:

O Overflow flag
D Direction flag
I Interrupt flag
S Sign flag
Z Zero flag
A Auxiliary carry flag
P Parity flag
C Carry flag

If the current instruction references a memory location and the
register window is visible, the contents of the memory
location will be displayed in the third line of the
register window beneath the flags field.

The register window is also used for editing the registers and
flags. Use the R command to move the cursor into the
register window. The registers can now be edited in
place. The following keys are active when editing the
register window:

Tab Position to the beginning of the next register field.

Shift Tab Position to the beginning

Chapter 2 User Interface

of the previous register
field.

Enter Accept changes and exit edit
register mode.

Esc Exit edit register mode.
The register the cursor is
currently on will NOT be
changed, but other
previously modified
registers will be changed.

Insert Toggle the value of a flag
when the cursor is
positioned in the flags
field.

Arrow keys Move the cursor left and
right and up and down in
the register window.

The register window cannot be sized since it always contains
three lines. However, its visibility can be toggled using the
WR command. This will free up screen space for the other
windows.

Associated commands: WR, R

Chapter 2 User Interface

2.3 Watch Window

XE "Watch window"§XE "Window:watch"§XE "Watch
expressions:display"§XE "Display:watch expressions"§The
watch window is a display-only window that can contain up to
eight lines. Each line displays the value of one expression that
is being watched. Each watch line contains the following
fields:

watch number This is a number from 0 to 7 that
identifies the watch variable
index. This number is used
when clearing watch variables
using the CWATCH command.

expression This is the actual expression that
was typed on the WATCH
command. This expression is
reevaluated every time the watch
window is displayed. If the
expression is NOT a symbol and
no segment is specified, the
following defaults are used:

If it's IP or EIP, CS is used.
If it's BP, EBP, SP or ESP, SS

is used.
Anything else uses DS,

including just hexadecimal
addresses.

location This is the hexadecimal address
of the watch variable.

Chapter 2 User Interface

value This is the current value of the
variable being watched. This
field can display the following
data types depending on the type
of watch set:

Byte hexadecimal
Word hexadecimal
Dword hexadecimal
Short Real (4 byte real)
Long Real (8 byte real)
10-Byte Real

The watch window cannot be sized, since it always contains
one line for each expression
being watched. However, its
visibility can be toggled using
the WW command. If there are
no watch expressions set, no
window will be displayed.

Associated commands: CWATCH, WATCH, WATCHB,
WATCHD

WATCHL, WATCHS, WATCHT,
WATCHW, WW

2.4 Data Window

XE "Data window" \r "SCTDataWin"§XE "Window:data" \r
"SCTDataWin"§XE "Data:edit" \r "SCTDataWin"§XE

Chapter 2 User Interface

"Data:display" \r "SCTDataWin"§XE "Edit:data window" \r
"SCTDataWin"§XE "Display:data window" \r
"SCTDataWin"§The data window displays the contents of
memory. Each line displays 16 bytes of data in the current
format if it is either byte, word, dword, short real or long real.
If the current format is 10-byte real, each line displays 20 bytes
of data. The data bytes are also displayed in ASCII on the
right side of the window if the current format is hexadecimal
(byte, word, or dword). There can be up to four different data
windows, each able to display a different location in a different
format. The window number is displayed on the line above the
data window on the right hand side. It will always be in the
range 0 to 3. Only one data window is displayed at a time.
Cycling through the data windows is done with the DATA
command (default function key is F12).

To the left of the window number is the segment type. This
can be one of the following two fields:

VM The displayed data is from a
segment from a virtual machine.

PROT The displayed data is from a
protected mode selector.

To the left of the segment type is the data format type. This
can be either byte, word, dword,
short real, long real or 10-byte
real. Use the FORMAT
command to change the data
format display of the current data
window.

Chapter 2 User Interface

An expression can be assigned to any of the data windows
using the DEX command. Whenever Soft-ICE/W pops up,
this expression is evaluated and the resulting location will be
displayed in the specified data window. A good use of this
function is setting up a window that always displays the
contents of the stack. To do this, you could type in the
command DEX 0 SS:ESP. Every time Soft-ICE/W pops up
after that, the current contents of the stack will be displayed in
data window 0.

In addition to containing the window number, the segment type
and the data format, the line above the data window also
contains one of the following two strings:

If the window has been assigned an expression with the
DEX command, the ASCII expression will be
displayed on this line.

The nearest symbol preceding the data location. This
can be one of the following strings:

 • A symbol name followed by the hexadecimal
offset from the symbol name.

 • A VxD name followed the by the hexadecimal
offset from the beginning of the VxD.

 • A Windows module name followed by a type, if
the data segment is part of the Windows heap.

 • The owner name of the data segment if it is part
of a virtual machine.

Chapter 2 User Interface

 • If the location does not have an associated
symbol, this field will be blank.

The data window is also used for editing memory. Use one of
the E commands to move the cursor into the
data window. Memory can now be edited either
with hexadecimal or ASCII characters. The
data window can also be scrolled using the
arrow keys. The following keys are active
when editing the data window:

Tab Toggle position between numeric and ASCII areas.

Shift Tab Position cursor to the
beginning of the previous
data field (previous byte,
word, or dword in
hexadecimal mode,
previous character in
ASCII mode).

Shift F3 Change the format of the
data window. Pressing
this key combination
cycles between the byte,
word, dword, short real,
long real and 10-byte real
formats.

Enter Accept changes and exit edit data
mode.

Chapter 2 User Interface

Esc Exit edit data mode. The
data field the cursor is
currently on will NOT be
changed, but other
previously modified data
fields will be changed.

Arrow keys Move the cursor left and
right and up and down in
the data window. They
are also used to scroll
through memory. The
PageUp and PageDn
keys can be used to scroll
the data window a page at
a time.

The data window can also be scrolled when the cursor is in the
code window or the
command window. The
following keys are used
to scroll the data window:

Alt PageUp Scroll data window down one
page.

Alt PageDn Scroll data window up one page.

Alt UpArrow Scroll data window down one
line.

Chapter 2 User Interface

Alt DownArrow Scroll data window up one line.

The data window can be sized by entering the WD command
followed by the number of lines desired. The WD command
can also be used to toggle the visibility of the data window.

Associated commands: D, DATA, DB, DW, DD, DEX,
DS, DL, DT

E, EB, ED, EW, ES, EL, ET, FORMAT, S,
WD

2.5 Code Window

XE "Code window" \r "SCTCodeWin"§XE "Window:code" \r
"SCTCodeWin"§XE "Code:display" \r "SCTCodeWin"§XE
"Display:code window" \r "SCTCodeWin"§XE
"Source:display" \r "SCTCodeWin"§XE "Display:source code"
\r "SCTCodeWin"§XE "Mixed mode,display" \r
"SCTCodeWin"§XE "Display:mixed mode" \r
"SCTCodeWin"§XE "Display:code" \r "SCTCodeWin"§The
code window is used to display the disassembled code and/or
source code. The code can be displayed in three different
modes:

Source If source code is available, the actual source file can
be displayed in the code window.

Mixed In mixed mode, both the actual
source lines and the disassembled

Chapter 2 User Interface

instructions are displayed. Each
source line is followed by its
assembler instructions.

Code In code mode, only the
disassembled instructions are
displayed.

Each disassembled instruction in code or mixed mode contains
the following fields:

Location This is the hexadecimal address
of the instruction. If there is a
public code symbol for this
location, it is displayed on the
line above this instruction.

Code bytes These are the actual hexadecimal
bytes of the instruction. The
default is to suppress the code
bytes since they are usually not
needed. These bytes can be
displayed using the CODE
command

Instruction The disassembled mnemonics of
the instruction. This is the
current assembly language
instruction. If any of the
memory address parts of the
instruction match a symbol, the
symbol will be displayed instead

Chapter 2 User Interface

of the hexadecimal address.

An example of a disassembled instruction in code or mixed
mode is:

00FD:00001DA1 56 PUSH
SI

When Soft-ICE/W pops up, the instruction located at the
current EIP will always be
displayed in reverse video. If the
instruction is a relative jump, it
will contain either the string
(JUMP) or (NO JUMP)
indicating whether or not the
jump will be taken. If the
instruction references a memory
location, the contents of the
memory location will be
displayed in the register window
beneath the flags field. If the
register window is not visible,
this value is displayed on the end
of the code line.

If there is a break point set on any instruction in the code
window, the line will be displayed with the bold video
attribute.

The line above the code window displays information about
the code being displayed. At the right of this line is the code
segment type. This can be one of the following three fields:

Chapter 2 User Interface

VM The displayed code segment is from a virtual machine.

PROT16 The displayed code is from a 16-
bit protected mode selector.

PROT32 The displayed code is from a 32-
bit protected mode selector.

On the left hand side of the line will be one of the following:

• If source code is displayed on the screen, the
name of the current source file will be
displayed.

• A symbol name followed by the hexadecimal
offset from the symbol name. This corresponds
to the top line displayed in the code window.

• A VxD name followed by the hexadecimal
offset from the beginning of the VxD.

• A Windows module name followed by the
segment number in parenthesis, if the code
segment is part of the Windows heap.

• The owner name of the code segment if it is part
of a virtual machine.

• If the location does not have a preceding
symbol, this field will be blank.

You move the cursor into and out of the code
window by using the EC command (default key

Chapter 2 User Interface

is F6). When the cursor is in the code window,
you can scroll the code window up and down
using the arrow keys and the PageUp/PageDn
keys. You can set point-and-shoot style break
points in this mode by using the BPX (default
key is F9) and HERE (default key is F7)
commands.

You can still enter commands even when the cursor is in the
code window. After you type the first letter of a command, the
cursor will move down to the command window. After Enter
is pressed and the command is completed, the cursor will move
back to the code window. You can also use function key
commands in this mode.

The instruction at the current EIP can be made visible at any
time by using the '.' command. Any code address can be
unassembled using the U command.

The code window can also be scrolled when the cursor is in the
command window. The following keys are used to scroll the
code window:

Ctrl PageUp Scroll code window down one page.

Ctrl PageDn Scroll code window up one
page.

Ctrl UpArrow Scroll code window down one
line.

Ctrl DownArrow Scroll code window up one

Chapter 2 User Interface

line.

The code window can be sized by entering the
WC command followed by the number of lines
desired. The WC command can also be used
to toggle the visibility of the code window.

Associated commands: ., A, BPX, CODE, EC, FILE,
HERE, SRC, SS, TABS, U, WC

2.6 Command Window

XE "Command window" \r "SCTCmdWin"§XE
"Window:command" \r "SCTCmdWin"§XE
"Change:command window size"§The command window is
used for command entry and miscellaneous information
display. The command window is always visible and is always
at least two lines long. It cannot be sized explicitly, but its size
changes as the other windows are sized. Commands can be
entered whenever the cursor is in the command window or the
code window. The description of the command window can be
broken down into several functional areas described below.

2.6.1 Line Editing

XE "Command line,edit"§XE "Edit:command
line"§Commands are typed in from the keyboard and executed
when the Enter key is pressed. The command line can be
edited using the following keys:

Chapter 2 User Interface

Home Move cursor to column 0 of command line.

End Move cursor past the last
character of the command line.

Insert Toggle insert mode. When in
insert mode the cursor is
displayed as a block cursor. The
character entered is inserted at
the current cursor position and
the end of the line is shifted to
the right by one. When not in
insert mode, the character
entered overwrites the character
at the current cursor position.

Delete Delete the character at the
current cursor position and shift
the end of the line to the left by
one.

Bksp Destructive backspace.

Esc Cancel command line.

Arrows The left and right arrow keys
move the cursor within the
command line.

Chapter 2 User Interface

2.6.2 Command History

XE "Command history"§XE "Commands:recall"§Soft-ICE/W
remembers the last 32 commands that have been typed in the
command window. These commands can be recalled for
editing and execution. When the cursor is in the command
window, the following keys are used for command recall:

UpArrow Get the previous command from the
command history buffer.

DownArrow Get the next command from the
command history buffer.

When the cursor is in the code window, the
following keys are used for command recall:

Shift UpArrow Get the previous command
from the command history buffer

Shift DownArrow Get the next command
from the command history buffer.

2.6.3 Information Display

XE "Display:information"§Many Soft-ICE/W commands
display information in the command window. Information is
displayed starting at the line beneath the command and
continuing downward. If displaying on the last line of the
window, the window will scroll. If all the information cannot

Chapter 2 User Interface

fit in the window, an 'Any Key To Continue, ESC To Cancel'
prompt will appear on the help line. This prompting can be
turned off using the PAUSE command.

2.6.4 Display History

XE "Command window:save contents"§XE
"Display:history"§Soft-ICE/W reserves memory to save
everything that is written into the command window. The
command window can then be scrolled up and down. The
following keys are used to scroll the command window:

Shift UpArrow Scroll the display history down by
one line.

Shift DownArrow Scroll the display history up by
one line.

PageUp Scroll the display history down by
one page.

PageDn Scroll the display history up by one
page.

Soft-ICE/W initially reserves enough memory to store 128
lines of data. This can be increased by using the /HST switch
on the DOS command line when starting WINICE or by using
the HST statement in the WINICE.DAT initialization file.
XE "WLOG.EXE"§
The display history can be saved to a disk file with the utility

Chapter 2 User Interface

WLOG.EXE. WLOG.EXE can be run from Windows or from
DOS. When run from DOS, WLOG.EXE has the following
syntax:

WLOG [file-name]

If the file already exists, it is truncated to length zero before
the display history is written to the file. If file-name is not
specified, the command usage is displayed.

When run from Windows, WLOG.EXE will prompt the user
for the output file name.

Some occasions where using WLOG would be very handy
include when you are dumping large amounts of data,
disassembling code, or listing Windows messages logged by
the BMSG command. You must first make sure that the data
is going to the command window so that WLOG has access to
the information. For example, before dumping data, remove
the data window so the data is displayed in the command
window.

2.6.5 Help Line

XE "Help line"§The bottom line of the screen always contains
the help line. This line is updated as characters are typed on
the command line. The help line gives three different levels of
help as the command line is entered:

• When the typed characters don't specify a
complete command, all valid commands that

Chapter 2 User Interface

start with the typed characters are displayed.

• When the typed characters exactly match a
command, a description of that command is
displayed.

• When a space is entered after a command, the
syntax of that command is displayed.

When editing in the register window or the data window, the
help line contains the valid editing keys for that window.

2.6.6 Command Completion

As characters are typed, the help line displays the list of valid
commands that start with those characters. If only one
command is displayed, then the command can be automatically
completed by pressing the space bar. Soft-ICE/W will fill in
the remaining characters of the command followed by a
trailing space.

2.6.7 Function Keys

XE "Function keys:define"§XE "Define:function keys"§You
can assign character strings to any of the 48 function keys (F1-
F12, Shift F1-Shift F12, Ctrl F1-Ctrl F12, Alt F1-Alt F12)
by using the FKEY command or putting them in the
WINICE.DAT initialization file. This makes it possible to
assign a command or a series of commands to a particular
function key. When the function key is pressed, the character

Chapter 2 User Interface

string is inserted into the keyboard buffer, so it behaves as if
the string had been typed in.
XE "; symbol"§XE "^ symbol"§
The semicolon ';' character represents the Enter key. If the
string is preceded by the caret '^' character, the command will
not be displayed. This makes it possible to repeatedly use
function keys without cluttering up the command window.

2.7 Command Syntax

XE "Commands:syntax"§XE "Address definition"§XE
"Expression definition"§Soft-ICE/W is a command-driven
debugging tool. To interact with Soft-ICE/W, you enter
commands, which can optionally be modified by parameters.

All commands are text strings that are one to six characters in
length and are case-insensitive. All parameters are either
ASCII strings or expressions. A space between the command
and its parameters is not required.

An address in Soft-ICE/W can be either a segment:offset
address or just an offset.

Expressions in Soft-ICE/W are combinations of the
following items:

Numbers Numbers are entered in
hexadecimal and can be from 1
to eight characters in length (32
bit maximum).

Chapter 2 User Interface

Segments Any number or register followed by a
colon is interpreted as a segment. Soft-ICE/W will
interpret this segment according the current code mode.
If the current popup mode is from a virtual machine,
the value will be treated as a real mode segment. If the
current popup mode is from protected mode, the value
will be treated as a selector. This behavior can be
overridden by preceding the segment with an override
operator. Use & for segments and # for selectors.

Registers Registers can be used in place of
numbers in an expression. Soft-ICE/W will then use
the contents of the registers for these values. The
following register names may be used in an expression:

AL, AH, AX, EAX, BL, BH, BX, EBX
CL, CH, CX, ECX, DL, DH,
DX, EDX
SI, ESI, DI, EDI, BP, EBP, SP,
ESP
DS, ES, SS, CS, FS, GS
IP, EIP or FL

If the (E)SP or (E)BP registers are used and no segment
is specified, Soft-ICE/W will automatically use the SS
segment. If the (E)IP register is used without
specifying a segment, Soft-ICE/W will automatically
use the CS segment. For all other registers, Soft-
ICE/W will use DS. For plain hexadecimal numbers,
Soft-ICE/W will continue to use whatever
segment/selector is currently displayed in the data
window.

Chapter 2 User Interface

XE ". symbol"§XE "Line numbers"§Line numbers
A decimal number preceded by

a '.' (period) will be interpreted
as a source file line number. It
will be converted to the correct
segment:offset address.

Symbols Symbols are case-insensitive
ASCII strings representing the
address of a symbol. Soft-
ICE/W recognizes the following
symbols:

• All symbols loaded by WLDR
or from WINICE.DAT.

• All exported symbols from
USER.EXE, GDI.EXE and
KERNEL.EXE.

• All VxD names.

• The names of all exported VxD
calls.

• The names of all Windows
messages in the range 0 to 400h.

Operators Soft-ICE/W recognizes the
following operators:

XE "* symbol"§XE "Operators"§
+, -, *, /

Chapter 2 User Interface

All operators are of equal
precedence and are evaluated left
to right.

Soft-ICE/W also recognizes the
following special operators:

XE "@ symbol"§XE "Indirection operator"§XE
"Addressing:special characters"§

@ The '@' sign typed as the first character of an
expression is the indirection operator. If the specified segment
is a 32-bit segment, Soft-ICE/W will do 32-bit near
indirection. This means the dword at the supplied address will
be treated as a 32-bit offset within the specified segment. If
the specified segment is a 16-bit segment, Soft-ICE/W will do
16-bit far indirection. This means the dword at the supplied
address will be treated as a segment:offset address.

XE "& symbol"§XE "Ampersand (&)"§
& An '&' preceding a segment expression will

force the segment to be evaluated as a real mode
segment regardless of the current popup type.
XE "# symbol"§
A '#' preceding a segment

expression will force the segment
to be evaluated as a protected
mode selector regardless of the
current popup type.

Expression examples :

D DS:EBX*4

Chapter 2 User Interface

This command displays memory at the address formed
by multiplying the contents of the EBX register by
four.

G @SS:ESP

Assume you are at the first instruction of a called
procedure. Entering this command will set a temporary
break point at the return address on the stack and skip
the procedure.

Chapter 2 User Interface

U GetMessage

This command will disassemble instructions starting at
the Windows GetMessage procedure.

D #FD:0

This command will display data from the protected
mode selector FD.

D &FD:0

This command will display data from the real mode
segment FD.

G .112

This command will cause your program to execute until
it reaches line number 112.

2.8 Notational Conventions Used in this Manual

XE "[] symbols"§XE "| symbol"§XE "Notational
conventions"§Throughout this manual, the following
conventions are used:

Command names and function key names are printed in
bold. Other key names are in italics.

Other words that are in italics must be replaced by an
actual value, rather than typing in the italicized word.

Chapter 2 User Interface

Items that are in brackets [] are optional.

Items separated by a vertical bar are choices. (x | y means
to use either item x or item y)

Chapter 3 Using Soft-ICE/W

Chapter 3 Using Soft-ICE/W

µ3.1 Experimenting with Soft-ICE/W.....................45
3.1.1 Popping Up Soft-ICE/W..........................45
3.1.2 Changing the Hot Key Sequence.............46

3.2 Loading Systems Level Symbols.......................46
3.3 Loading Programs for Debugging......................47

3.3.1 Preparing a Program for Debugging........47
3.3.2 Preparing a Windows Driver for
Debugging..49

3.3.2.1 Multiple Code Segments In Module49
3.3.2.2 Source Code In Include Files.........50
3.3.2.3 Fixed LOADONCALL Segments. 50

3.3.3 Preparing a VxD for Debugging..............51
3.3.4 WLDR Program and Symbol Loader......51
3.3.5 Loading a Windows Program for
Debugging..52
3.3.6 Loading a DOS Program for Debugging. 53

3.4 Debugging a Program at Source Level..............54
3.4.1 Special Note for Debugging C Programs.55
3.4.2 Single Stepping and Tracing....................56
3.4.3 Point-and-Shoot Break Points..................56
3.4.4 Navigating Through Your Source Files...56
3.4.5 Range Break Points..................................57
3.4.6 Back Trace History..................................57

3.5 Debugging a DOS T&SR in a Virtual Machine.59
3.6 Debugging a DOS Loadable Device Driver.......61
3.7 Hints for System Level Debugging in DOS VMs63
3.8 Debugging a Windows Device Driver...............63
3.9 Debugging a Windows VxD..............................65
3.10 Debugging Multiple Programs At Once...........66
3.11 Exploring Windows Internals with Soft-ICE/W67

Chapter 3 Using Soft-ICE/W

3.11.1 Single Stepping and Execution Break
Points..68
3.11.2 Exploring the Windows/DOS Transition71
3.11.3 Setting Break Points in VxD's................72
3.11.4 Protected Mode Level Transitions.........73

3.12 Memory Addresses in Windows......................74
3.12.1 Different Modes of Enhanced Windows74

3.12.1.1 16-Bit Protected Mode.................74
3.12.1.2 32-Bit Protected Mode.................75
3.12.1.3 8086 Virtual Address Mode.........75

3.12.2 Overriding the Default Soft-ICE/W
Addressing Mode...75
3.12.3 Virtual Addresses...................................76

3.12.3.1 Current Virtual Machine..............78
3.12.3.2 Windows and Windows Programs78
3.12.3.3 Physical Memory.........................79
3.12.3.4 Windows VxD's...........................79
3.12.3.5 Windows Programs and DOS VM's80
3.12.3.6 LDT Addresses............................80

Chapter 3 Using Soft-ICE/W

3.1 Experimenting with Soft-ICE/W

XE "Soft-ICE/W:experimenting" \r "SCTExp"§Soft-ICE/W is
a Windows resident debugger. This means that while
Windows is running, Soft-ICE/W is always in memory waiting
to be activated through its Ctrl D hot key sequence. Soft-
ICE/W is useful for many types of debugging, and is used
quite differently depending on your debugging problem. A
good way to learn about Soft-ICE/W is to experiment by
popping it up in different parts of Windows and using some of
the Soft-ICE/W "Display System Information" commands to
tell you where you are and what Windows is currently doing.
This chapter assumes that you've installed and loaded Soft-
ICE/W before beginning to experiment. If you haven't yet
done so, see "Soft-ICE/W Installation" and "Loading Soft-
ICE/W" on page 7 for more information on installing and
loading. The examples in this chapter also assume you are
using the supplied default WINICE.DAT initialization file for
function key definitions.

This chapter shows you how to get started using Soft-ICE/W.
The sub-chapters 3.1 through 3.3 should be read no matter
what your intended use of Soft-ICE/W. Other sub-chapters
can be read as you begin to use Soft-ICE/W on particular
debugging problems.

3.1.1 Popping Up Soft-ICE/W

XE "Soft-ICE/W:pop up"§XE "Pop up:Soft-ICE/W"§The
default hot key sequence is Ctrl pressed simultaneously with

Chapter 3 Using Soft-ICE/W

D. This will pop up the Soft-ICE/W screen.
Note

When you pop up Soft-ICE/W,
you will typically see assembly
language instead of source code
displayed in the Soft-ICE/W
code window. This is because
Soft-ICE/W can pop up at
whatever point the instruction
pointer happened to be within
Windows or MS-DOS.

Normally when the Soft-ICE/W screen pops up, it will replace
your Windows display. If Soft-ICE/W is not compatible with
your Windows mode, or if you prefer to see the Soft-ICE/W
screen and the Windows display at the same time, you can use
Soft-ICE/W on a second monitor or on a second computer
attached through the serial port.

3.1.2 Changing the Hot Key Sequence

XE "Change:hot key sequence"§XE "Hot key
sequence,change"§XE "Alternate:key sequence"§If you wish to
use a different hot key sequence to pop up the Soft-ICE/W
screen, you can easily change the hot key sequence with the
ALTKEY command. You typically place the ALTKEY
command in the INIT statement of the WINICE.DAT
initialization file. This will always change the key sequence
from the start of Windows. If Windows is already running and
you decide that you have a hot key conflict with another
program, you can pop up Soft-ICE/W and change the hot key

Chapter 3 Using Soft-ICE/W

sequence for the current debugging session by entering the
ALTKEY command on the Soft-ICE/W command line.

For example, to change the hot key sequence to Ctrl Z, you
would enter:

ALTKEY CTRL Z

See page Error: Reference source not found for a complete
description of the ALTKEY command.

3.2 Loading Systems Level Symbols

XE "Applications,load for debugging" \r "SCTLoadApp"§XE
"Load:applications for debugging" \r "SCTLoadApp"§XE
"WLDR.EXE" \r "SCTLoadApp"§XE "Load:symbols" \r
"SCTLoadApp"§XE "Symbols:load" \r "SCTLoadApp"§XE
"Load:programs" \r "SCTLoadApp"§XE "Symbols:debug
with" \r "SCTDebugSym"§Soft-ICE/W is a Windows resident
debugger that is in memory at all times while Windows is
running. This gives you the ability to pop up Soft-ICE/W to
trace through any code at any time including system software.
Soft-ICE/W automatically loads exported symbols from GDI,
USER and KERNEL as well as module names, VxD names
and VxD service routines. There are two ways you can load
additional systems level symbols.

You can use the EXP command in WINICE.DAT to load
exported symbols from DLL's and Windows Apps. This will
add to the symbols displayed by Soft-ICE/W's EXP command.

You can also load .SYM files supplied by Microsoft in the

Chapter 3 Using Soft-ICE/W

Windows SDK. These symbols are loaded in the form of
program symbol tables and are used in the same way you
would use symbols loaded for a program that you are
debugging.

There are several examples of the EXP directive and the
LOAD directive commented out in the default WINICE.DAT.
Un-comment the appropriate lines in WINICE.DAT to
experiment with these additional system symbols.

Note
If you are loading WIN386.SYM
(built for the debugging kernel
only), you may want to place the
command 'TABLE AUTOOFF'
in the INIT statement of
WINICE.DAT. Otherwise,
almost every time you pop up
Soft-ICE/W you will switch to
the WIN386.SYM symbol table.

3.3 Loading Programs for Debugging

In addition to being a resident debugger, Soft-ICE/W also
provides the capability to load and debug a program as you
would with a traditional applications debugger. The following
sections describe how to prepare and load your program for
debugging at source level.

Chapter 3 Using Soft-ICE/W

3.3.1 Preparing a Program for Debugging

XE "Compile switches"§XE "Link switches"§XE
"Switches:compile"§XE "Switches:link"§XE "COM
file,prepare to debug"§XE "Symbol file"§XE
"MSYM.EXE"§Before debugging a DOS or Windows
program, you normally compile and link the program with the
symbolic switches. With Borland compilers, use the /v switch
on both the compile and link. With Microsoft compilers, use
the /Zi switch on the compile and the /CO switch on the link.

If you have a DOS program that is a .COM file, you must use
an alternate method. You must create a detailed .MAP file,
and run the supplied utility MSYM.EXE to create a .SYM file.
WLDR will look for the .SYM file if it does not find symbols
in the .EXE file.

For Microsoft compilers, you must use the /M and /LI switches
when linking to create a detailed .MAP file. For Borland
compilers use the /m and /l switches.

When Soft-ICE/W loads your program into memory it will
load all of the source files that were compiled with debug
information. In a large program, this may not be practical.
Soft-ICE/W allows you to selectively load source files by
using a .SRC file. You create the .SRC file with an editor.
When Soft-ICE/W loads symbols into memory it searches for a
file name program-name.SRC on the same directory as the
program. The .SRC file contains a list of the source files to be
loaded regardless of how many files were compiled with debug
information.

If the .SRC file is not present, all files are loaded. If the .SRC

Chapter 3 Using Soft-ICE/W

file is length 0, no files are loaded. The .SRC file is a
simple text file with file names (without path) delimited
by carriage return/line feed. For example, if you have a
C program named FOO.EXE with 10 source files
named FILE1 - FILE10 and you only want to load 3, 5
and 8 the FOO.SRC file would contain:

FILE3.C
FILE5.C
FILE8.C

The final step in preparing a program for debugging is to make
sure that you have reserved enough memory with the
SYM statement in your WINICE.DAT file to hold the
symbol information and all of the source files.

3.3.2 Preparing a Windows Driver for Debugging

XE "Windows:driver,prepare for debugging"§XE
"Debug:Windows driver"§For most drivers, you prepare the
program as if it were an application. However, there are some
sample assembly language drivers supplied in the Microsoft
DDK that will not debug properly at source level with the
standard approach. You should try the standard approach first.
If you have problems with source synching up with the
generated assembly code, see below.

Many of the sample Windows drivers supplied with the DDK
are structured in a way that is not fully compatible with the
tools with respect to source level debugging. These problems
occur for one of the following reasons:

Chapter 3 Using Soft-ICE/W

1. Multiple code segments are defined in each module.
2. Code is in include files.

3.3.2.1 Multiple Code Segments In Module

XE "Debug:multiple code segments"§XE "Multiple code
segments,debugging"§The debug records included in the .EXE
file when the /CODEVIEW switch is used do not handle
multiple code segments in a module, therefore we must extract
the debug information from the .MAP file with the MSYM
utility. MSYM creates a .SYM file that is compatible with
Soft-ICE/W. If you have a driver with multiple code
segments defined in each module, then build using the
following steps:

1. MASM with /Zi or /Zd.
2. LINK with /LI and /MA (DO NOT USE /CO).
3. Enter MSYM followed by the file name with no extension.

(DO NOT USE Microsoft's MAPSYM; it does not handle
source records properly.)

4. Place the .SYM file created by MSYM.EXE in the same
directory as your driver.

5. Place a "LOAD = path/driver-name.DRV" statement in
WINICE.DAT.

6. Make sure that you have reserved enough memory for the
symbol information and all of the source files with the
SYM directive in WINICE.DAT.

Chapter 3 Using Soft-ICE/W

3.3.2.2 Source Code In Include Files

XE "Include files,source code"§Source code in include files is
not handled by the linker properly when creating line number
records in .MAP files. This problem is present in the sample
display drivers that come with the DDK. The worst offender
seems to be BITBLT.ASM. If you wish to debug a driver that
has code in the include files, there are three alternatives:

1. Eliminate include files by placing the source code from
the include file directly in the main module.

2. Eliminate include files by making them separate modules.
3. Fix the .MAP file after linking, by inserting the include

file names records into the .MAP file manually with your
text editor.

The third method is clumsy and must be done after each link.
The problem is that the line number sections in the .MAP file
contain the line number information for the include files, but
not the include file names. You must look through the line
number sections finding places where a line number is less
than the one that preceded it. At this place you must insert
a line that contains the include file name. See file
EXAMPLE.MAP for an example of this.

3.3.2.3 Fixed LOADONCALL Segments

XE "FIXED LOADONCALL attribute"§Some of the segments
in the sample display drivers have the FIXED LOADONCALL
attribute. Apparently, these segments may be loaded only in
certain Windows modes of operation (standard or enhanced).

Chapter 3 Using Soft-ICE/W

If you have a segment with this attribute, the symbol table will
retain its ordinal number rather than being updated with the
actual selector value. To remedy this you must enter
SYMLOC R after the segment has been loaded (or
alternatively modify the .DEF file to change the attribute for
debugging).

3.3.3 Preparing a VxD for Debugging

XE "VxD:prepare for debugging"§XE
"Debug:VxD"§Normally you prepare a VxD by assembling
with the /Zi switch and linking with the /CO switch. However,
this does not work with some VxDs. If you are debugging a
VxD and are having trouble with the source lines matching up
with the generated code then read on.

To properly debug a VxD that is being built with the
CodeView switch (/CO) on the link line, you may have to alter
your source files so that PCODE segments are always placed
before INITCODE or REALCODE in the source files. This is
not the case with several sample VxD's supplied with the
DDK.

If this re-organization is not reasonable in your situation, you
can use the MSYM utility to extract the symbol and line
number information from the .MAP file. To do this, do the
following steps:

1. Assemble with the /Zi or /Zd switch.
2. Link with the /MA /LI switches. (DO NOT USE /CO.)
3. Run MSYM.EXE by entering MSYM program-name

Chapter 3 Using Soft-ICE/W

(with NO extension).
4. Place the .SYM file created by MSYM.EXE in the same

directory as your VxD.
5. Place a "LOAD = path/vxd-name.extension" statement in

the WINICE.DAT file.
6. Make sure that you have reserved enough memory for the

symbol information and all of the source files with the
SYM directive in WINICE.DAT.

3.3.4 WLDR Program and Symbol Loader

The Soft-ICE/W utility WLDR.EXE is used for loading
Windows and MS-DOS programs, symbols and source files.
WLDR.EXE can be run from a DOS virtual machine to load
MS-DOS programs or from Windows to load Windows
programs. WLDR.EXE will load your program, its symbols
and source into memory, then it will transfer control to Soft-
ICE/W for debugging.

3.3.5 Loading a Windows Program for Debugging

XE "WLDR.EXE:install icon"§XE "Windows:load
program"§XE "WLDR.EXE:loading Windows program"§To
load a Windows program, WLDR.EXE must be run from
Windows. If the WLDR icon is not already installed, first
install WLDR's icon on a Windows menu from the Windows
program manager by selecting File followed by New, then
choose Program Item. Fill in the command line field with the
full path and file name of WLDR.EXE. After the icon is
installed, double click on the icon to run WLDR.

Chapter 3 Using Soft-ICE/W

When run, WLDR prompts the user for the file name of the
program to be loaded and any command line parameters for the
Windows program. You can choose browse to navigate
through the file system to find the program that you want to
load. WLDR remembers the last five programs that you have
debugged in a file called WLDR.INI.

Other WLDR options let you load symbols only (no program is
loaded) or load the program and symbols without loading
source files.

XE "DLL, debug symbolically"§XE "Debug:DLLs"§If your
program has associated DLLs (Dynamically Loadable
Libraries) that you want to debug symbolically, you can use
one of the following methods to bring in symbols and source:

1) Go to File Properties and enter a command line
listing all the DLLs, separated by spaces, and end the
list with a semicolon followed by the program name.
For example:

 DLL1 DLL2 DLL3; PROG.EXE

3) Specify these DLL's in the WINICE.DAT file using
the LOAD statement.

2) Pre-load each of the DLLs separately with WLDR
before you load your main program.

Chapter 3 Using Soft-ICE/W

Note
If you are debugging a program
frequently you can select the
make icon option to create an
icon that will quickly load a
single program. You can then go
to File Properties to add DLL
names to the command line if
desired.

Note
If your program has too many
source files to fit into symbol
memory, you can instruct WLDR
to selectively load source files by
using a .SRC file. See page 63
for more information.

3.3.6 Loading a DOS Program for Debugging

XE "DOS program:load"§XE "WLDR.EXE:loading DOS
program"§To load a DOS program for debugging,
WLDR.EXE must be run from a DOS virtual machine.
WLDR.EXE can load programs with no source or symbols,
programs with source and symbols, or source and symbols
without the program.

For symbolically debugging application programs and T&SR
programs, you will typically use WLDR.EXE to load the
program, symbols and source files in one step. For debugging

Chapter 3 Using Soft-ICE/W

T&SRs loaded before Windows, DOS loadable device drivers,
ROMs and other system components you will typically use
WLDR.EXE to load only the symbols and source files, then
locate the symbols with the SYMLOC command.
XE "WLDR.EXE:syntax"§
The syntax for WLDR.EXE is:

WLDR program-name [.SYM | .extension]

If no file extension is supplied, WLDR.EXE loads your
program, symbols and source files by doing the following:

1. Loads program symbols and source into the
reserved symbol memory.

2. Loads program-name.EXE into memory at the
location it would have loaded if it had been
loaded directly from the DOS prompt.

3. Brings up Soft-ICE/W with the instruction
pointer at the first instruction of your program.

If .SYM is specified, then only step number 1 above will be
performed, which loads only the symbols and source.
Specifying .SYM does not mean a file with the
extension .SYM; it just means you want only symbols and
source loaded.

If the extension .EXE or .COM is specified, then only steps 2
and 3 will be performed, which loads only the program.

Chapter 3 Using Soft-ICE/W

3.4 Debugging a Program at Source Level

XE "Source level debugging"§XE "Debug:at source
level"§This section describes the basics of debugging a DOS or
Windows program at source level. It assumes that the program
has been built with symbols and source.

The first step in debugging an application program at source
level is to load it with WLDR.EXE, the Soft-ICE/W symbol
table and source loading utility. WLDR.EXE should be run
from Windows to debug a Windows program or from a DOS
VM to debug a DOS program. WLDR.EXE loads your
program into memory with the instruction pointer at the very
first instruction of your startup code.

WLDR.EXE prompts for path names if source files can not be
found on the current directory or the directories referenced in
the symbol tables. If your source files are on other directories,
use the SRC environment variable to specify the other
directories. Set the SRC environment variable from DOS
before running Windows so the environment variable is valid
in all virtual machines. The syntax for setting the SRC
environment variable is:

SET SRC =path1;path2;...;pathn

Path1 through pathn are directories that contain source files
referenced in symbol tables that you will be loading.

Chapter 3 Using Soft-ICE/W

Note
If your program has too many
source files to fit into symbol
memory, you can instruct WLDR
to selectively load source files
with a .SRC file. See page 63
for more information.

3.4.1 Special Note for Debugging C Programs

XE "C program,debugging"§If you are debugging a C program
using Microsoft or Borland tools, then the source file that
contains main or WinMain is displayed. At this point you
must press the F8 or F10 key to cause your program to execute
to main or WinMain. In most cases you want to do this.

In the rare case that you want to debug your startup code of a C
program, press the F3 key to go into mixed mode, or assembly
mode if you do not have source loaded for your startup code.
Now you can debug through your startup code. If you want to
get to main or WinMain after pressing F3, then enter G main
or G WinMain.

3.4.2 Single Stepping and Tracing

Once your program is loaded you can perform standard
debugging operations like stepping through code. To single
step, press the F8 key; to program step, press the F10 key. In
C or other high level languages, pressing F10 will step to the

Chapter 3 Using Soft-ICE/W

next source line. F8 will trace into a called function if source
is available for that function, otherwise it will act the same as
F10.

3.4.3 Point-and-Shoot Break Points

XE "Point-and-shoot break point"§XE "Set:point-and-shoot
break point"§XE " Break points:point-and-shoot"§
One of the most common debugging operations is setting and
clearing sticky break points. With Soft-ICE/W you can set
point-and-shoot break points by placing the cursor on the
desired instruction, then pressing the F9 key. These are sticky
break points that can be toggled on and off with the F9 key.
The cursor must be in the code window before setting point-
and-shoot break points. If the cursor is in the command
window, press the F6 key to move the cursor to the code
window.

If you wish to go to a particular line without setting a sticky
break point, place the cursor on the desired line and press the
F7 key. Alternatively, you can enter G .line-number or G
symbol-name.

3.4.4 Navigating Through Your Source Files

XE "Source:browse through"§While setting point-and-shoot
break points or while browsing it is often necessary to move
through the source in the code window. Soft-ICE/W gives you
several ways to view different source code in the code window.
For local movements use the arrow keys and

Chapter 3 Using Soft-ICE/W

PageUp/PageDown keys. If you want to start displaying in the
current file at a different line number, enter U .line-number.
The specified line is displayed as the top line of the code
window. If you want to move the display to a particular
function enter U symbol-name, where symbol-name is the
name of the function. This will cause the source code for the
specified symbol or routine to be displayed at the top of the
code window.

A convenient method for moving within a source file is the
source search command (SS). Entering SS string will move
the source display to the next occurrence of the specified
string.

If you want to view a different source file use the FILE
command. Enter FILE file-name to display the specified file.
The file name can be a partial-name. If you don't know the
name of the source file, entering FILE * will display all of the
files loaded for the particular symbol table.

3.4.5 Range Break Points

XE "Exploring:range break points"§XE "Range break
points:exploring"§One of Soft-ICE/W's most powerful features
is the memory range break point. These are set from the
command line with the BPR command. Memory range break
points will tell Soft-ICE/W to pop up whenever memory in the
specified range is accessed. This is especially useful if you
believe a memory area is being corrupted, but you don't know
what program or routine is responsible.

Chapter 3 Using Soft-ICE/W

We will experiment with memory ranges by loading a test
program with WLDR if you have not already done so. If your
test program is written in C, press F8 to get to main. Now
enter BPR DS:0 DS:200 W. This will set a memory range
break point over the first 200H bytes of your data segment for
write. Now press F5 to run your program. Soft-ICE/W will
pop up whenever anything writes into this area. If it is a
Windows program, then chances are you will see assembly
language in the Soft-ICE/W code window as Windows
manipulates data in your program's data segment.

To disable the range, enter BC *. Now press F5 to continue
running your program.

3.4.6 Back Trace History

XE "Exploring:back trace history"§XE "Back trace
history:exploring"§Another powerful feature of Soft-ICE/W is
back trace history. When back trace history is enabled, Soft-
ICE/W collects every instruction executed in the specified
memory range into a large circular buffer (the buffer size is
determined by the TRA= statement in the WINICE.DAT
initialization file). Back trace history is especially useful if
you have a program that crashes, but you don't know where to
start looking. If you have a back trace range set over your
program's code area when the crash occurs, you can single step
backwards in time so you can see where your program lost
track.

To experiment with back trace ranges, load a program with
WLDR. If your program is written in C, then press F8 to get

Chapter 3 Using Soft-ICE/W

to main. Set a back trace range over your code segment by
entering BPR CS:0 CS:FFFF T. If it is a Windows program,
the FFFF limit will most likely be too high; you must use the
LDT command to get the actual limit. For example, entering
LDT CS might display an LDT line that looks something like:

94D Code16 Base=80628CC0 Lim=0000179F DPL=1 P
RE

The limit in this example is 0000179F.

Now enter LDT CS and note the limit that is returned.

Notice that the syntax for a back trace range is the same as that
of the range break point above, except that we used a T for
trace instead of a W for write.

Now set a point-and-shoot break point somewhere in your
program, then press F5 to let your program run. Soft-ICE/W
should pop up as soon as the point-and-shoot break point goes
off.

Enter TRACE 1. This puts you in Soft-ICE/W's trace
simulation mode. It allows you to debug through the back
trace history buffer. The parameter "1" tells Soft-ICE/W that
you want to start at the most recent instruction.

To trace backward in the back trace history buffer press Alt
F8. This will single step one instruction back in time. Press
Alt F8 several times. Now try Ctrl F8, which will single step
one instruction forward.

Enter TRACE OFF to exit trace simulation mode.

Chapter 3 Using Soft-ICE/W

Enter BC * to disable the back trace and the point-and-shoot
break point.

See "Back Trace Ranges" on page 138 for a detailed
description of back trace ranges.

3.5 Debugging a DOS T&SR in a Virtual Machine

XE "DOS T&SR,debug"§XE "Debug:DOS T&SR"§There are
two scenarios for debugging a DOS T&SR in the Windows
environment. The first case is if the DOS T&SR is loaded in a
DOS VM after Windows has been run. In this case, you load
and begin debugging your init code just as if it were a DOS
application program.

The second case is if the T&SR program is loaded prior to
running Windows. In this case you must load the symbol table
separately with the WLDR command from the DOS prompt in
a Windows VM.

You prepare your T&SR for debugging by placing the
appropriate compiler and linker switches just as if you were
preparing to debug the program with an application debugger.
You can then load the T&SR's symbol table and source files
into Soft-ICE/W's symbol memory with the WLDR utility or
you can cause the symbol table and source files to be pre-
loaded with the LOAD statement in WINICE.DAT (see
"WINICE.DAT Initialization File" on page 18 for more
information about WINICE.DAT).

Chapter 3 Using Soft-ICE/W

To use the WLDR.EXE utility to load your symbol table and
source files you must enter the following from a DOS VM:

WLDR program-name.SYM

When .SYM is specified, WLDR will extract and load the
symbols from your .EXE file. Next it will load into memory
all of the source files referenced in the symbol table.

Your symbols must now be located to the address that your
T&SR program had been previously loaded. To do this you
must first pop up Soft-ICE/W with its hot key sequence. Now
enter MAP to display a memory map of the DOS environment.
The MAP command's display will show the base segment of
your T&SR's. The file name of your T&SR should be
displayed one or more times in the far right column of the
MAP command's display. The first entry is usually the
environment, the second entry is usually the resident part of
your T&SR. Note the starting segment of your T&SR; it is
displayed in the left column of the MAP command display.

Hint
If you are stopping at an
embedded INT 1 or INT 3 in
your T&SR you can usually
locate the symbols by entering
SYMLOC CS.

Chapter 3 Using Soft-ICE/W

Note
DOS versions prior to 5.0 or
environments with a NetWare
shell may not display the name
of your T&SR if your T&SR has
released its environment. You
must determine which entry is
the main body of the T&SR by
its size or ordering with other
T&SRs loaded.

Enter SYMLOC base-segment to adjust the symbols and
source references to match the actual addresses in your T&SR.

You can now use the FILE command to bring up a source file
for your T&SR. At this point you can set point-and-shoot
break points to begin debugging your T&SR.

Note
Soft-ICE/W cannot debug your
T&SR's init code or portions of
the code that execute before
Windows is run. Use Soft-ICE
for DOS to debug these portions.

3.6 Debugging a DOS Loadable Device Driver

XE "DOS loadable device driver,debug"§XE "Debug:DOS
loadable device driver"§DOS loadable device drivers are
loaded prior to Windows, so you must load the symbol table
separately with WLDR from the DOS prompt in a Windows

Chapter 3 Using Soft-ICE/W

VM.

You prepare your DOS loadable driver for debugging by
placing the appropriate compiler and linker switches just as if
you were preparing to debug the program with an application
debugger. Many drivers are "EXE2BINed" to create a .COM
or .SYM file. It is best to leave your DOS loadable driver as
an .EXE file while debugging. This gives you the most
complete symbol information. If you cannot leave your driver
as an .EXE file for some reason, then you must create a .SYM
file with the MSYM.EXE utility. See "Loading a DOS
Program for Debugging" on page 70 for details.

You can load your loadable driver's symbol table and source
files into Soft-ICE/W's symbol memory with the WLDR utility
or you can cause the symbol table and source files to be pre-
loaded with the LOAD statement in WINICE.DAT (see
"WINICE.DAT Initialization File" on page 18 for more
information about WINICE.DAT).

To use the WLDR.EXE utility to load your symbol table and
source files you must enter the following from a DOS VM:

WLDR driver-name.SYM

When .SYM is specified, WLDR will extract and load the
symbols from your .EXE file or search for a .SYM file. Next
it will load into memory all of the source files referenced in the
symbol table.

Your symbols must now be located to the address that your
DOS loadable driver had been previously loaded. To do this
you must first pop up Soft-ICE/W with its hot key sequence.

Chapter 3 Using Soft-ICE/W

Now enter MAP to display a memory map of the DOS
environment. The MAP command's display will show the
base segment of your driver. If your driver is a character
device, the MAP command displays the device name in the far
right column of the MAP command's display. If your driver is
a block device, then the name is not present. You must
determine which block device is yours by the order of loading
or the size. Note the starting segment of your loadable driver:
it is displayed in the left column of the MAP command
display.

Enter SYMLOC base-segment to adjust the symbols and
source references to match the actual addresses in your driver.

You can now use the FILE command to bring up a source file
for your loadable driver. At this point you can set point-and-
shoot break points to begin debugging.

Hint
If you are stopping at an
embedded INT 1 or INT 3 in
your driver you can usually
locate the symbols by entering
SYMLOC CS.

Note
Soft-ICE/W cannot debug your
DOS loadable driver's init code
or portions of the code that
execute before Windows is run.
Use Soft-ICE for DOS to debug
these portions.

Chapter 3 Using Soft-ICE/W

3.7 Hints for System Level Debugging in DOS VMs

XE "DOS VMs:debugging"§XE "Debug:DOS VMs"§There
are a few differences between debugging in DOS and
debugging in a Windows DOS VM. These are particularly
notable when dealing with interrupts.

Many T&SRs, DOS programs and DOS loadable drivers hook
interrupt vectors. With Soft-ICE/W you can debug any part of
your T&SR, even portions that are controlling hardware at
interrupt time. You can set point-and-shoot break points in
your interrupt handlers, then single step from there.

One difference between Soft-ICE for DOS and Soft-ICE/W is
the use of break points on interrupts. In most case when
debugging an interrupt handler you want to get control when
the interrupt occurs. For example, you may want control when
the timer interrupt occurs. With Soft-ICE for DOS you would
have set a BPINT 8. However, under Windows, there are two
problems. First, Windows moves the base of the interrupt
controller from 8 to 50H, so the actual hardware timer interrupt
is 50H, not 8.

Secondly, if you set a BPINT 50 instead of a BPINT 8, Soft-
ICE/W will pop up in Windows protected mode interrupt 50
handler, not in DOS where your interrupt service routine is.
Interrupts go to Windows first which executes hundreds or
thousands of instructions before control gets to your T&SR.

The easiest solution to this problem is to set a BPX break point
on the first instruction of the interrupt handler instead of using

Chapter 3 Using Soft-ICE/W

a BPINT command. For example, to set a break point on the
first instruction of the timer interrupt handler in the current
virtual machine you would enter: BPX &0:8*4.

3.8 Debugging a Windows Device Driver

XE "Windows:debug:device driver"§XE "Debug:Windows
device driver"§XE "Device driver,debugging"§A Windows
device driver is structured just like a Windows application.
However, you often want to start debugging the Windows
driver before the Windows interface is up. This is especially
true in the case of a display driver.

Soft-ICE/W lets you start debugging at source level from the
very first instruction of your Windows driver. You prepare
your driver for debugging just as you would prepare a
Windows application, by building with the proper debugging
switches for your compiler and linker.

To debug your driver you must do the following:

1. Place a LOAD statement in the WINICE.DAT
initialization file or use the /LOAD switch on
the WINICE.EXE command line. The syntax
for the LOAD statement is:

LOAD = driver-file-name

2. Place an INT 1 or INT 3 instruction at the start
of your driver, or the first instruction that you
would like to debug. Windows C programmers
can call the Windows API call DebugBreak() to

Chapter 3 Using Soft-ICE/W

perform an INT 3.

3. Place the I1HERE ON or I3HERE ON
command in your WINICE.DAT initialization
file.

Soft-ICE/W loads the symbol table and all source files
referenced in the symbol table. Soft-ICE/W will pop up at the
INT 1 or INT 3 instruction of the driver. If you need to
eliminate the INT 1 or INT 3 instruction so you don't continue
popping up there, you can use the ZAP command to replace
the INT 1 or INT 3 with NOP instructions before debugging.

Note
Your driver is loaded by
Windows from the SYSTEM.INI
file just as if you were not
debugging.

3.9 Debugging a Windows VxD

XE "Windows:debug:VxD"§XE "Debug:Windows VxD"§XE
"VxD:debugging"§Soft-ICE/W lets you start debugging from
the very first protected mode instruction of your Windows
VxD. You prepare your VxD for debugging just as you would
prepare a Windows application, by building with the
debugging switches. Use the /Zi switch with MASM5, and
the /CO switch with LINK386.

Before you debug your VxD, you must place a LOAD
statement in the WINICE.DAT initialization file or use

Chapter 3 Using Soft-ICE/W

the /LOAD switch on the WINICE.EXE command line. The
syntax for the LOAD statement is:

LOAD = vxd-file-name

For example, to load the symbols for MYVXD.386 enter:

LOAD = C:\WINDEV\MYSTUFF\MYVXD.386

The LOAD statement causes Soft-ICE/W to load the symbol
table and source files referenced in the symbol information.
However, Soft-ICE/W will not stop at the first instruction of
the VxD.

If you wish to debug initialization code, you must use one of
the following methods:

1. Place an INT 1 instruction in your VxD at the
point you want to Soft-ICE/W to pop up. You
must also place the command I1HERE ON in
the INIT statement of the WINICE.DAT
initialization file. This will cause Soft-ICE/W
to pop up when the INT 1 instruction is
executed. If you need to eliminate the INT 1
instruction so you don't continue popping up
there, you can use the ZAP command to replace
the INT 1 with NOP instructions before
debugging.

2. Remove the X command from the INIT string
in WINICE.DAT. When Soft-ICE/W pops up,
you can set a break point in your code by using
the VxD map, and/or with symbols if you

Chapter 3 Using Soft-ICE/W

preloaded symbols.

Soft-ICE/W will not allow debugging of your initialization
code segments at source level, but once you get to your actual
driver code you can debug at source level.

Note
Your VxD is loaded by Windows
from the SYSTEM.INI file just
as if you were not debugging.

Note
You can use Soft-ICE for DOS
to debug the real mode
initialization of your VxD.

3.10 Debugging Multiple Programs At Once

XE "Multiple programs,debug"§XE "Debug:multiple programs
at once"§Soft-ICE/W allows multiple symbol tables to be
loaded at the same time. This lets you debug complex sets of
system software that may contain several different components
including Windows applications, Window DLLs, Windows
drivers, VxDs,DOS applications, DOS T&SRs and DOS
loadable device drivers.

The symbol tables for system level components and VxDs are
typically loaded with the LOAD directive in the
WINICE.DAT file, and the symbol tables for the applications
are loaded along with the applications by using the WLDR
utility.

Chapter 3 Using Soft-ICE/W

The TABLE command gives you a list of all the symbol tables
currently loaded and lets you select a different symbol table.
When you reach a break point in a program that has a
corresponding symbol table, enter TABLE followed by the
first few characters of the symbol table name. This will
change the current symbol table to the one that matches your
program.

If you are not sure which table is the current table, enter
TABLE with no parameters. This will show all loaded tables
with the current table highlighted.

You can also switch tables to a symbol table that does not
match the code where you are currently executing. This is
useful when you want to set a break point in a different
program than the one you are currently in. This always works
for Windows applications, drivers, DLLs and VxDs. It may
not work for programs in DOS VM's if the one where you wish
to set the break point is not the VM currently mapped in.

3.11 Exploring Windows Internals with Soft-ICE/W

XE "Windows:internals,exploring"§XE "Exploring:Windows
internals"§For many people the easiest way to learn a software
product is by experimenting. This section is designed to give
people a head start with experimenting in assembly mode with
Soft-ICE/W. This section is specifically designed to show you
how to use Soft-ICE/W to explore Windows internals. It is
written with the understanding that the reader has some
understanding of 8086 assembly language.

Chapter 3 Using Soft-ICE/W

Start by pressing the Ctrl D key sequence to pop up Soft-
ICE/W. When you pop up Soft-ICE/W with Ctrl D, or if Soft-
ICE/W pops up because it has hit a break point, you may be
anywhere in Windows. The first thing to look at is the line
above the code window. Soft-ICE/W displays the owner or
nearest symbol at the far left. If the owner displayed is a
Windows program, then the ordinal number of the code
segment is displayed in parenthesis. If it is a VxD, the owner
is the name of the Vxd. If it is a DOS program, the owner is
the name of the DOS program.

At the far right you will see PROT16, PROT32 or VM. This
tells you the processor mode. If the mode is VM then you are
in a DOS virtual machine, if the mode is PROT32 you are
most likely in a Windows VxD, and if the mode is PROT16
you are in a Windows program or the Windows kernel.

If you are in the Windows kernel or a Windows program you
can enter STACK to see what path Windows has taken to
reach the current routine. The STACK command walks the
stack displaying the nesting of previously called Windows
routines.

Other commands that may give you useful information about
what Windows is currently executing are TASK, HEAP and
LHEAP. TASK displays the Windows task queue. One of
the Windows programs in this list will be marked with an
asterisk. This is the currently running Windows program.
HEAP displays all of the currently allocated memory blocks in
the global heap. LHEAP will display all of the allocated
memory blocks in the local heap if there is a current local
heap.

Chapter 3 Using Soft-ICE/W

HEAP can also be used to display the heap of a Windows
program or DLL. For example if you enter HEAP KERNEL,
you will get a display something like:

Han/Sel Address Length Owner Type Seg/Rsr

00F5 000311C0000004C0KERNEL ModuleD
B

00FD 00031680 00007600 KERNEL Code 01

0586 00054220 00003640 KERNEL Alloc

0106 00083E4000002660 KERNEL Code D 02

010E 805089A
0

00001300 KERNEL Code D 03

0096 80520440 00000C20KERNEL Alloc

Total Memory: 62K

3.11.1 Single Stepping and Execution Break Points

XE "Single stepping,exploring"§XE "Exploring:single
stepping"§XE "Execution break point:exploring"§XE
"Exploring:execution break points"§Wherever you pop up in

Chapter 3 Using Soft-ICE/W

Windows, you can single step. The F8 key is programmed to
single step and the F10 key is programmed to program step
(step over calls and loops). You can even single step through
processor mode transitions and interrupt routines.

To set execution break points, you first move the cursor into
the code window by pressing F6. Use the arrow keys to place
the cursor on the instruction that you would like a break point
on. Press F9 to highlight the line and set the execution break
point on the instruction. To clear the break point, place the
cursor back on the same line and press F9 again. Press F6 to
move the cursor back to the command window.

Press Ctrl D to execute to your break point. Soft-ICE/W will
return to Windows, and Windows will continue running until
the break point is hit. At this point Soft-ICE/W will pop up
again. Since you probably set a break point on a random
memory location, it may not go off. If not, press Ctrl D again
to pop up Soft-ICE/W and enter BC 0 to clear the break point
(this assumes you only have one break point set). Now try
experimenting by setting break points with F9 until you get
one to go off.

Another way to set a sticky break point is with the BPX
command. Enter BPX followed by an address or the name of a
symbol. While experimenting with Windows, try setting
execution break points on some Windows kernel routines. Use
the Soft-ICE/W EXP command to get a list of exported
symbols. Then enter BPX symbol-name to set a break point.
After you have set a few break points, enter BL to list the
break points. Entering the BC * command will clear all break
points that are currently set.

Chapter 3 Using Soft-ICE/W

Soft-ICE/W keeps a history of all break points that have been
set. You can use the BH command to view or re-set break
points that have been cleared. Enter BH now. If you would
like to re-set an old break point, use the cursor keys to be on
the line of the break point you would like to re-set. Press the
Insert key to highlight and select one or more break points.
Press Enter to set the selected break points and exit from the
BH command, or Esc to exit from the BH command without
setting any break points.

If you are experimenting by setting break points on kernel
routines, you may want to try WINEXEC and BITBLT. Enter
BPX WINEXEC, and also BPX BITBLT. After pressing
Ctrl D and Windows is running, try executing a Windows
program like CALC. This will cause the break point on
WINEXEC to go off. After you enter Ctrl D again, the
program you selected will run until the BITBLT routine is
called. When Soft-ICE/W pops up at the start of the BITBLT
routine, you will notice the routine name "BITBLT" is
displayed at the top of the assembly language display. At this
point enter STACK. This will display the nesting of routines
called in the sequence to reach BITBLT. Since you did not
load the symbol table for the Windows program, you will not
get the routine names, but only the addresses.

If you would like to see the call stack of a different Windows
program in your system, enter TASK. This will give you a list
of all Windows programs that are currently running. Notice
that the current program is marked with '*' to its left. Now
enter STACK followed by a program name that is not the
current program. This will show the call stack at the last point
that the program relinquished control back to Windows.

Chapter 3 Using Soft-ICE/W

Now enter Ctrl D several times and each time Soft-ICE/W will
come right back. Enter the STACK each time. The call stack
will be different if BITBLT is called from a different sequence
of routines. Since BITBLT is called frequently in most
Windows programs, you will eventually have to clear the
break point to continue running Windows.

One thing to keep in mind is that Soft-ICE/W implements BPX
break points by placing an interrupt 3 instruction at the break
address, so don't try to set a BPX-style break point on a data
object. If you are unsure, use the LDT command to see if it is
in data or code. Enter LDT selector where selector is the
segment portion of the address. The second column of the
LDT display will show you the segment type. If it is CODE16
or CODE32, then a BPX-style break point is safe at this
location.

Note that it is always safe to set a break point on execution on
exports from the EXP command since they are all code entry
points.

Don't be afraid to experiment with single stepping and setting
break points anywhere in the Windows environment. See "
Using Break Points Commands" on page 109 for details on
setting more powerful Soft-ICE/W break points.

3.11.2 Exploring the Windows/DOS Transition

XE "Windows/DOS transition,exploring"§XE
"Exploring:Windows/DOS transition"§An interesting series of
events to watch is the transition from Windows to DOS during

Chapter 3 Using Soft-ICE/W

a DOS function call by a Windows program. When a
Windows program accesses disk files, it usually makes DOS
function calls through interrupt 21H. The following
paragraphs show how to break on these calls to DOS and then
show the transition between protected mode where the
Windows program is running and Virtual 86 mode where DOS
is running.

Pop up Soft-ICE/W from Windows using Ctrl D, then set a
break point on interrupt 21 by entering BPINT 21. Enter Ctrl
D to return to Windows, then run a Windows program like
calculator. Windows actually makes DOS interrupt calls, so
you'll be seeing Windows' INT 21 calls. Each time Soft-
ICE/W pops up, notice which DOS function call the Windows
program is executing. This is displayed next to the INT 21
instruction in the code window.

Press Ctrl D a few times and Soft-ICE/W will immediately
pop up each time as new DOS calls occur. Now enter BPX @
&0:21*4. This will set a break point in the primary VM at the
place where the interrupt 21 will execute when control
eventually gets to the VM. The "0:21*4" is the interrupt vector
for INT 21, the "&" tells Soft-ICE/W that the 0 is a virtual 86
segment and the "@" means address pointed to, or contents of.

Now enter Ctrl D, and Soft-ICE/W will pop up in the VM at
the first instruction of DOS or at the interrupt 21 handler of a
T&SR that is intercepting DOS calls. The name of the T&SR
or the name DOS is displayed in the line above the code
window. Windows may have executed several hundred
instructions between the time the Windows application
executed the INT 21 and the time control enters DOS. In
future experimentation you may want to single step through

Chapter 3 Using Soft-ICE/W

this entire transition.

Now enter U @ SS:SP. This will disassemble at the return
address that will execute when DOS eventually performs an
IRET. Notice that this is in the ROM BIOS. The first
instruction that will execute is ARPL. In fact this is the last
instruction that will execute in the VM. The ARPL will cause
an invalid op code fault that will send control back to
Windows. This is a trick that Windows uses to make the
transition from the VM to protected mode code. Now enter D
@SS:SP. Look at the ASCII portion of the data window.
Notice that the first instruction is a "c". That just happens to
be the op-code for ARPL. This "c" could be anywhere in the
ROM. In most BIOS's it turns out that control actually returns
into the ROM's copyright message.

Press the F5 key several times (this is equivalent to entering
Ctrl D). You should bounce back and forth between the two
break points that are set. Occasionally you may not go back to
the INT 21 in the Windows program, because sometimes
Windows does not actually perform an INT instruction to call
DOS in the VM. If you look at the EAX register in the register
window you will notice it changing each time you pop into
Soft-ICE/W as different values are placed in AH to call DOS
with different functions.

Enter BC * to clear the two break points before proceeding.

3.11.3 Setting Break Points in VxD's

XE "Set:break point in VxDs"§XE "Break points:set in

Chapter 3 Using Soft-ICE/W

VxDs"§We have not yet experimented with any 32-bit
Windows code. To do this, we will set a break point in a VxD.
Before we begin, navigate through Windows to a menu that
holds the DOS icon. Pop up Soft-ICE/W and press Alt F3.
This will close the code window. Now enter VCALL. This
will display a list of VxD service routines. Most of these
routines are located in Windows supplied VxDs. These are
actually vectors to routines, but Soft-ICE/W automatically
performs the indirection for you when you try to set a break
point on one of these names.

Press the space bar several times to page through the list, or
press Esc to stop the display. Now press Alt F3 to make the
code window visible again, then enter BPX
CALL_WHEN_VM_RETURNS. This will set a break point
at a VxD call that will be called when entering and leaving a
DOS VM. Now press F5 to return to Windows. Double click
on the DOS icon. This should pop up the Soft-ICE/W screen.
The far right of the line above the code window should show
PROT32. This means we have popped up in 32-bit code.

Press F5 to continue. At the DOS VM command prompt enter
EXIT to close the VM. This should bring you back to the
same break point in Soft-ICE/W. Now enter BC * to clear the
break point.

3.11.4 Protected Mode Level Transitions

XE "Level transitions,protected mode"§XE "Protected mode
level transitions"§XE "INT30H instructions"§Windows uses
two different 386/486 protection levels. Protection levels is a

Chapter 3 Using Soft-ICE/W

mechanism that lets less trusted code have less privileges than
more trusted code. In Windows enhanced mode, VxDs run at
level 0 (most trusted level) and all other code runs at level 3
(least trusted level).

When Windows code calls a VxD it must make a level
transition from level 3 to level 0. This transition is performed
by calling into a segment filled with INT 30H instructions.
The interrupt 30H entry in the IDT is an interrupt gate that
causes the processor to transition from level 3 to level 0. The
INT 30H interrupt service routine vectors to the appropriate
VxD call based on the offset that was called in the segment
filled with INT 30H instructions.

Note that in Windows 3.0 this mechanism worked slightly
differently. In Windows 3.0, the two levels used were level 0
and level 1. The mechanism to transition to level 0 to make
VxD calls was a segment filled with HLT instructions instead
of a segment filled with INT 30H instructions. The HLT
caused a GP and the GP handler vectored to the appropriate
routine based on the offset that cased the GP. The change to
INT 30H not only improves performance, but slightly
simplifies a very complicated GP handler.

So if you are single stepping through Windows and you get a
screen filled with INT30H instructions, don't panic; it's normal.

When Windows wants to make a transition from level 3 to
level 0 from a DOS VM, then a different mechanism is used.
Instead of an HLT instruction, an ARPL instruction is used.

Chapter 3 Using Soft-ICE/W

3.12 Memory Addresses in Windows

XE "Processor modes"§XE "Windows:processor modes"§XE
"Addressing:modes"§XE "Windows:addressing modes"§One
of the most confusing things about Windows in enhanced
mode is the different 386/486 processor modes that Windows
uses. 16-bit Windows programs, 32-bit VxD's and programs
in DOS VMs are all different. These next few sections explain
these different addressing modes and how Windows addresses
memory in general.

3.12.1 Different Modes of Enhanced Windows

When you pop up Soft-ICE/W, the instruction pointer may be
anywhere in Windows or in a DOS VM. You can pop up in
any one of the three addressing modes supported by Windows.
These modes are 16-bit protected mode, 32-bit protected mode,
and 8086 virtual address mode. Soft-ICE/W displays the
386/486 addressing mode on the line above the code window at
the far right. Soft-ICE/W displays PROT16, PROT32 or VM
to identify the three addressing modes.

3.12.1.1 16-Bit Protected Mode

XE "16-bit protected mode"§Windows programs and Windows
itself are 16-bit protected mode programs. In 16-bit protected
mode, the segment portion of the address is a selector. A
selector is an index into a lookup table. The address is
calculated by extracting a base address from the lookup table
and adding it to the offset portion of the address. There are

Chapter 3 Using Soft-ICE/W

two lookup tables: the LDT(local descriptor table) and the
GDT(Global Descriptor table). The processor decides to use
the LDT or GDT based on bit two of the selector: if bit two is
a 1 then the LDT is used, otherwise the GDT is used.
Selectors for Windows programs are LDT selectors and
selectors for VxD's are GDT selectors.

The segments are usually 64K or less. The actual length of a
segment can be displayed with the LDT or GDT command.

3.12.1.2 32-Bit Protected Mode

XE "32-bit protected mode"§Windows VxD's are 32-bit
protected mode programs. Like 16-bit protected mode
programs, the segment portion of the address is treated as a
selector. However there are typically only two selectors used:
28 for code, and 30 for data and stack.

These two selectors each address the entire 4 gigabyte virtual
address space of the processor.

The processor interprets instructions differently in 32-bit
protected mode than it does in 16-bit protected mode or virtual
8086 mode. Soft-ICE/W decides how to disassemble
instructions based on the type of the selector specified.
Therefore if you try to disassemble some 16-bit code with
selector 28, the disassembly will not be accurate.

It is possible to develop 32-bit Windows applications. You
must have a translation layer that converts 32-bit API calls to
16-bit Windows API calls. As of this writing, Watcom and

Chapter 3 Using Soft-ICE/W

MetaWare provide tool kits for developing 32-bit Windows
programs.

3.12.1.3 8086 Virtual Address Mode

XE "8086 virtual address mode"§Any code executing in a DOS
virtual machine is using 8086 virtual address mode. In 8086
virtual address mode the processor calculates an address by
multiplying the segment portion by 16, then adding the offset.
When you pop Soft-ICE/W in a DOS virtual machine you will
see 'VM' displayed on the line above the code window.

3.12.2 Overriding the Default Soft-ICE/W Addressing
Mode

XE "8086 virtual address mode"§XE "Default address
mode"§XE "Address mode,default"§Soft-ICE/W maintains
two default addressing modes: one for the code window and
one for the data window. The default for the code window is
always the mode that existed when Soft-ICE/W popped up.
The default mode for the data window is 32-bit protected mode
until it is changed.

To change the default mode in the code window you must use
an override character when entering the U command to
disassemble code or display source. To change the default in
the data window you must use an override character when
displaying or editing data with the D or E commands.

There are two override characters:

Chapter 3 Using Soft-ICE/W

& — Force address to be an 8086
virtual mode address.

— Force address to be a protected
mode address. (Soft-ICE/W
determines whether it is a 16-bit
or 32-bit protected address from
the attributes in the LDT or GDT
entry for this selector).

3.12.3 Virtual Addresses

XE "Virtual addresses,calculating"§When you use an address
in Soft-ICE/W it is almost always a virtual address. It is not
the actual address that goes out on the processor bus (called the
physical address). The virtual address and physical address are
different because Windows uses paging to alter the
physical/virtual relationship.

To get from a virtual address to a physical address, the 386/486
must perform two separate translations. First it must combine
the segment or selector and the offset to get a linear address. If
it is an 8086 style segment:offset address this is done by
multiplying the segment by 16, then adding the offset. If it is a
protected mode selector:offset address then the linear address
is calculated by adding the offset to the base address found in
the GDT or LDT.

Once the linear address is calculated, the 386/486 uses a set of
lookup tables to get the actual physical address. These lookup

Chapter 3 Using Soft-ICE/W

tables are called page tables.

The paging mechanism allows physical memory to be divided
into 4K chunks. Page tables can be set up so that any 4K
chunk of physical memory can reside at any address in the 4
gigabyte virtual address range.
XE "Physical addresses:description"§
Most of the time you can ignore physical addresses. However
there are times when you must know physical addresses, and
there are also times when you may get confused if you do not
understand the concept of physical and virtual addresses.
Below is a memory map showing how Windows partitions the
4 gigabytes of virtual address space. This is followed by
several sub sections that describe each component of the
Windows memory map.

Sample Enhanced Windows Memory Map

00000000 - 000FFFFF - Current Virtual Machine
00000000 - 000FFFFF - Windows & Windows Programs
(overlap with VM)

00400000 - 7FFFFFFF - Physical memory contiguously
mapped
80000000 - 803FFFFF - Windows VxD's
80500000 - 80FFFFFF - Windows Programs
81000000 - FFFFFFFF - DOS VM's

The above memory map is not guaranteed, but for reference
only. All above addresses are in hexadecimal.

The entire 4 gigabyte virtual address space can be accessed in
Soft-ICE/W with GDT selector 30. For example, to display
memory in the monochrome video adapter you would enter: D
#30:400B0000. The # tells Soft-ICE/W that this is a protected

Chapter 3 Using Soft-ICE/W

mode selector and will change the data window default mode
to protected mode.

To look at any physical address, use the PHYS command as
follows:

PHYS B8000
This shows you a list of virtual addresses that you can precede
with #30: to get a physical address.

To see how Windows partitions memory on your computer you
can use the Soft-ICE/W PAGE command. See the description
of the PAGE command on page 223 for more details.

3.12.3.1 Current Virtual Machine

XE "Current Virtual Machine addresses"§XE "Virtual
Machine:current addresses"§The first area shown in the
Windows memory map above (00000000 - 000FFFFF) holds
the current DOS virtual machine. This area is paged in and out
with other DOS virtual machines as the Windows user switches
VM's. The current virtual machine is addressable from
protected segment 30 at two different places, at 0 and at its
permanent location somewhere above 8100000. However, you
would normally access this memory with virtual 8086
addressing. Also note that Windows pages memory to disk if
it does not have enough physical memory so that if you try to
look at memory owned by a DOS VM with Soft-ICE/W, the
memory may not currently be paged in. In this case the data
window will be filled with '?'.

Also note that the initial VM (which is occupied by loadable

Chapter 3 Using Soft-ICE/W

drivers and T&SRs that were loaded prior to running
Windows) generally has the same physical and virtual
addresses. This rule does not hold past 640K with UMB's and
video memory. However, most parts of other VMs do not
share this one-to-one relationship between physical and logical
memory, since their physical memory is in extended memory.
Some of the low areas (usually less than 64K) are shared
among virtual machines and will have the same physical and
virtual addresses.

3.12.3.2 Windows and Windows Programs

XE "Windows:addresses"§XE "Windows:program
addresses"§Windows and Windows programs occupy the
virtual area between 00000000 and 000FFFFF and also the
area between 80500000 and 80FFFFFF. This memory is
almost always accessed using a 16-bit protected selector, as
Windows' memory management software is continuously
changing the virtual addresses of data objects.

Notice that the first megabyte of the Windows area overlaps
with the VM area. This can present particular confusion for
people doing system level debugging. This overlap occurs
because Windows starts as a DOS program, and the real-mode
DOS memory area (lower 1 Meg) becomes VM 1 in Windows
enhanced mode.

When Windows switches to a VM other than VM 1, it changes
the page table that covers the first four megabytes; each VM
gets its own page table so that task switches that involve VMs
are quick. Windows also invalidates the LDT so all of the

Chapter 3 Using Soft-ICE/W

LDT selectors that would be used to access Windows segments
are not available.

The net result for Soft-ICE/W users is that most of Windows is
invisible when you pop up in a VM. If sufficient memory is
available, Windows is still in the same memory it occupied
prior to the task switch to the VM. It is simply not
addressable.

There are some hints for dealing with this problem below in
the section entitled "LDT Addresses".

3.12.3.3 Physical Memory

XE "Physical memory addresses"§Physical memory is mapped
contiguously from 00400000 to 7FFFFFFF. This may seem a
bit confusing at first but it is quite simple and useful. If you
want to look at a particular physical memory address, you
simply add 0040000 to that address.

For example, if you would like to look at VGA graphics
memory that is at physical address 000A0000 you can always
view it with the virtual address 004A0000.

3.12.3.4 Windows VxD's

XE "Windows:VxD addresses"§Windows VxD's are mapped
from 80000000 to 803FFFFF. This is one area that it is safe to
use the 32-bit virtual addresses all of the time. Windows does
not change VxD virtual addresses and they are always

Chapter 3 Using Soft-ICE/W

available through GDT selectors 28 and 30.

3.12.3.5 Windows Programs and DOS VM's

XE "DOS VMs:addresses"§Windows normally allocates
several megabytes of virtual address space for Windows
programs starting at 80400000. Following this is memory for
DOS VM's. When a virtual machine is scheduled by the
Windows kernel it is also mapped to 0. At this point the VM is
visible in two virtual address ranges; one starting at 0, the other
starting at the VM's permanent address range above 80400000.

3.12.3.6 LDT Addresses

XE "LDT addresses"§Windows programs are generally
addressable from LDT selectors. Unfortunately, there are
times when the LDT is not valid. This usually happens when a
DOS VM other than VM 1 is currently running. So if you pop
up Soft-ICE/W at a place where there is no valid LDT, you
will not be able to dump memory or disassemble in Windows
programs.

This memory is usually mapped in somewhere between
00000000 and 03FFFFFF but the selectors are not valid and
you will typically not know the virtual address.

If you have a symbol table and source loaded for a Windows
program, you can set break points using symbols or point-and-
shoot break points with source.

Chapter 3 Using Soft-ICE/W

There are a few Soft-ICE/W commands that require a valid
LDT. These are HEAP, MOD, LHEAP, LDT, and TASK.

Chapter 4 Using Break Points Commands

Chapter 4 Using Break Points Commands

µ4.1 Introduction..82
4.2 Setting Break Points...83
4.3 Back Trace Ranges...104

4.3.1 Introduction..104
4.3.2 Using Back Trace Ranges Across Code
Areas...105
4.3.3 Using Back Trace Ranges Across Data..106
4.3.4 Special Notes..107
4.3.5 Implementation Details and Caveats......108

4.4 Manipulating Break Points...............................110

Chapter 4 Using Break Points Commands

4.1 Introduction

XE "Break number definition"§XE "Count definition"§XE
"Sticky break points"§XE "Break points:sticky"§XE "Break
points:introduction"§XE "Break points:limit on number
of"§XE "Break points:commands" \r
"SCTChapUsingBPs"§XE "Commands:break point" \r
"SCTSetBPs"§XE "Commands:break point" \r
"SCTManipBPs"§Soft-ICE/W has break point capability that
has traditionally only been available with hardware debuggers.
The power and flexibility of the 386/486 chip allows advanced
break point capability without additional hardware.

Break points can be set on memory location reads and writes,
memory range reads and writes, program execution, port
accesses, and ranges of Windows messages. Soft-ICE/W
assigns a hexadecimal number, from 0 to 1F, to each break
point. This break-number is used to identify break points
when you set, delete, disable, enable, or edit them.

All of the Soft-ICE/W break points are sticky. That means
they don't disappear automatically after they've been used; you
must intentionally clear or disable them using the BC or the
BD commands. When break points are cleared, they can be
recalled with the BH command which displays a break point
history. This history is saved in the WINICE.BRK file when
Soft-ICE/W is exited. Soft-ICE/W can handle 32 break points
at one time. There is a limit on break points on memory
location (BPMs), of which you can only have four, due to
restrictions of the 386/486 processor.

Chapter 4 Using Break Points Commands

Break points can be specified with a count parameter. The
count parameter tells Soft-ICE/W how many times the break
point conditions should be ignored before the break point
occurs.

In general, any Soft-ICE/W break point can be set anywhere in
memory. The principle exception to this is that I/O break
points cannot be set within VxD code. Also there are small
areas of memory that memory range break points can not span
(see the description of the BPR command on page 120 for
more information on these areas). These include the GDT
(global descriptor table), the IDT (interrupt descriptor table)
and level 0 stacks. Soft-ICE/W will warn you if you try to set
a range over the GDT or IDT, but not level 0 stacks. Level 0
stacks are allocated by Windows in system data areas. They
will never occur in a user program.

Chapter 4 Using Break Points Commands

4.2 Setting Break Points

XE "Set:break points" \r "SCTSetBPs"§XE "Break points:set" \
r "SCTSetBPs"§XE "Commands:set break points" \r
"SCTSetBPs"§XE "Commands" \r "SCTSetBPs"§XE
"Commands" \r "SCTManipBPs"§XE "Commands" \r
"SCTOtherCommands"§Commands:

BPM, BPMB,
BPMW, BPMD Set break point on memory

access or execution
BPR Set break point on memory range
BPRW Set multiple range break points

on Windows program or code
segment.

BPIO Set break point on I/O port
access

BPINT Set break point on interrupt
BPX Set/Clear break point on

execution
BMSG Set break point on Windows

message
CSIP Set CS:EIP (instruction pointer)

range qualifier

Chapter 4 Using Break Points Commands

BPM, BPMB, BPMW, BPMD

XE "BPM,BPMB,BPMW,BPMD commands (Set break point
on memory access or execution)"§XE "Break points:memory
access"§XE "Break points:execution"§XE "Memory:access
break point"§
Set a break point on memory access or execution.

Syntax :

BPM[size] address [verb] [qualifier value] [debug-
reg] [C=count]

size B, W, or D.

B -- Byte
W -- Word
D -- Double Word

The size is actually a range
covered by this break point. For
example, if double word is used,
and the third byte of the double
is modified, then a break point
will occur. The size is also
important if the optional qualifier
is specified (see below).

verb R, W, RW, or X.

R -- Read

Chapter 4 Using Break Points Commands

W -- Write
RW -- Reads and Writes
X -- Execute

qualifier EQ, NE, GT, LT, or M.

EQ -- Equal
NE -- Not Equal
GT -- Greater Than
LT -- Less Than
M -- Mask (a bit mask is
represented as a combination of
1's, 0's and X's. X's are don't-
care bits.)

XE "Mask definition"§
These qualifiers are only
applicable to the read and write
break points, not the execution
break point.

value A byte, word, or double word
value, depending on the size
specified.

debug-reg DR0, DR1, DR2 or DR3.

Comments :

If a verb is not specified, RW is the default.

If a size is not specified, B is the default.

Chapter 4 Using Break Points Commands

If a debug-reg is not specified, Soft-ICE/W will use the
first available debug register starting from DR3 and
working backwards. You can ignore the debug register
unless you're debugging an application that uses debug
registers itself, such as a debugging tool.XE
"Debug:register"§

All of the verb types except X cause the program to
execute the instruction that caused the break point. The
current CS:EIP will be the instruction after the break
point. If the verb type is X, the current CS:EIP will be
the instruction where the break point was set.

If R is specified, then the break point will occur on
read accesses and on write operations that do not
change the value of the memory location.

If the verb is R, W or RW, executing an instruction at
the specified address will not cause the break point to
occur.

If BPMW is used, the specified address must start on a
word boundary. If BPMD is used, the specified
address must start on a double word boundary.

BPM break points are set on virtual addresses. This
means they will always go off if their address is
accessed. This is different than BPX and BPR break
points that are dependent on the page table that was
active when they were set.

BPM break points are not affected by swapping or
discarding and reloading by Windows.

Chapter 4 Using Break Points Commands

Examples :

BPM ES:DI+1F W EQ 10 C=3

This command defines a break point on memory byte
access. The third time that 10 hexadecimal is written to
location ES:DI+1F, the break point will occur.

BPM CS:80204D20 X

This command defines a break point on execution. The
first time that the instruction at address CS:80204D20H
is executed, the break point will occur.

BPMW Foo W EQ M 0XXX XXXX XXXX XXX1

This command defines a word break point on memory
write. The break point will occur the first time that
location Foo has a value written to it that sets the high
order bit to 0 and the low order bit to 1. The other bits
can be any value.

BPM DS:80150000 W GT 5

This command defines a byte break point on memory
write. The break point will occur the first time that the
byte at location DS:80150000H has a value written to it
that is greater than 5.

Chapter 4 Using Break Points Commands

BPR

XE "BPR command (Set a break point on a memory
range)"§XE "Break points:memory range"§XE "Memory:range
break point"§XE "Range break points:set"§XE "T parameter of
BPR"§XE "TW parameter of BPR"§
Set a break point on a memory range.

Syntax :

BPR start-address end-address [verb] [C=count]

start-address Beginning of memory range.

end-address End point of memory range.

verb R, W, RW, T or TW.

R -- Read
W -- Write
RW -- Reads and Writes
T -- Back Trace on Execution
TW -- Back Trace on Memory
Writes

Comments :

None of the verb types cause the program to execute
the instruction that caused the break point. The current
CS:EIP will be the instruction that caused the break
point.

Chapter 4 Using Break Points Commands

There is no range break point on execution. If a range
break point is desired on execution, R must be used.
An instruction fetch is considered a read for range
break points.

If a verb is not specified, W is the default.

The range break point will degrade system performance
in certain circumstances. Any read or write within the
4K page that contains the break point range is analyzed
by Soft-ICE/W. This performance degradation is
usually not noticeable, however, degradation could be
extreme in exception cases.

The T and TW verbs enable back trace ranges on the
specified range. They do not cause break points, but
instead log instruction information that can be
displayed later with the SHOW or TRACE commands.
See "Back Trace Ranges" on page 138 for more
information.XE "Back trace ranges:enable"§

Range break points are always set in the current page
tables. If the addresses are below 4 megabytes, the
BPRs are then tied to the current virtual machine.

Because of this sharing, there are some areas in
memory where a range break point is not supported.
These include the page tables, the GDT, the IDTs, the
LDT, and Soft-ICE/W. If you try to set a range break
point or back trace range over one of these areas, Soft-
ICE/W will warn you.

Chapter 4 Using Break Points Commands

There are two other data areas that you can not place a
range break point over, but Soft-ICE/W will not warn
you. These are Windows level 0 stacks and critical
areas in the VMM. Windows level 0 stacks are usually
in separately allocated data segments. VMM is a VxD
that handles paging in Windows enhanced mode. If
you set a range over a level 0 stack or a critical area in
VMM you could hang the system.

If the memory that covers the range break point is
swapped or moved, the range break point will follow it.

Example :

BPR ES:0 ES:1FFF W

This command defines a break point on a memory
range. The break point will occur if there are any
writes to the memory range between ES:0 and ES:1fff.

Chapter 4 Using Break Points Commands

BPRW

XE "BPRW command (Set range break points on Windows
program or code segment)"§XE "Break points:on Windows
program"§XE "Break points:on code segment"§XE "Code
segment break point"§XE "Windows program break
point"§XE "Range break point"§XE "T parameter of
BPRW"§XE "TW parameter of BPRW"§
Set range break points on Windows program or code segment.

Syntax :

BPRW module-name | selector [verb]

module-name Any valid Windows Module
name that contains executable
code segments.

selector A valid selector in a Windows
program.

verb R, W, RW, T or TW.

R -- Read
W -- Write
RW -- Reads and Writes
T -- Back Trace on Execution
TW -- Back Trace on Memory
Writes

Comments :

Chapter 4 Using Break Points Commands

The BPRW command is a short-hand way of setting
range break points on either all of the code segments of
a Windows program or on a single segment.

The BPRW command actually sets BPR style break
points. If you enter the BL command after entering a
BPRW command, you can see all of the separate range
break points that were set.

Each of these range break points must be cleared
separately with the BC command.

Usage :

A common reason to use BPRW is setting a back trace
history range over an entire Windows application or
DLL. This is done by specifying the module name and
the T verb.

Another use is to break whenever control returns to a
program. Use the R verb to do this. This works
because the R verb breaks on execution as well as
reads.

Specifying the selector is useful because you do not
have to look up the segment limit with the LDT or
GDT commands.

Chapter 4 Using Break Points Commands

Note
The BPRW command can
become very slow when using
the T verb to back trace or when
using the command in
conjunction with a CSIP
qualifying range.

Example :

BPRW PROGMAN T

This command sets up a back trace range on all of the
code segments in the program manager. All
instructions executed by the program manager will be
logged to the back trace history buffer.

Chapter 4 Using Break Points Commands

BPIO

XE "BPIO command (Set a break point on an I/O port
access)"§XE "Break points:I/O port access"§XE "I/O
port:break point"§
Set a break point on an I/O port access.

Syntax :

BPIO port [verb] [qualifier value] [C=count]

port A byte or word value.

verb R, W, or RW.

R -- Read (IN)
W -- Write (OUT)
RW -- Reads and Writes

qualifier EQ, NE, GT, LT, or M.

EQ -- Equal
NE -- Not Equal
GT -- Greater Than
LT -- Less Than
M -- Mask (a bit mask is
represented as a combination of
1's, 0's and X's. X's are don't-
care bits.)

value A byte, word or dword value.

Chapter 4 Using Break Points Commands

Comments :

If value is specified, it is compared with the actual data
value read or written by the IN or OUT instruction
causing the break point. The value may be a byte, a
word, or a dword.

The instruction pointer (CS:EIP) will point to the
instruction after the IN or OUT instruction that caused
the break point.

If a verb is not specified, RW is the default.

Windows virtualizes many of the system I/O ports. To
get a list of these, use the TSS command. This will
show each hooked I/O port plus the address of the I/O
handler and the name of the VxD that owns it. If you
wish to see how a particular port is virtualized, set a
BPX on the address of the I/O handler.

Note
BPIO break points do not go off
in 32-bit VxD code.

Examples :

BPIO 21 W NE FF

This command defines a break point on I/O port access.
The break point will occur if the interrupt controller
one mask register is written with a value other than
FFH.

Chapter 4 Using Break Points Commands

BPIO 3FE R EQ M 11XX XXXX

This command defines a byte break point on I/O port
read. The break point will occur the first time that I/O
port 3FE is read with a value that has the two high
order bits set to 1. The other bits can be any value.

Chapter 4 Using Break Points Commands

BPINT

XE "BPINT command (Set a break point on an interrupt)"§XE
"Break points:interrupt"§XE "Interrupt:break point"§
Set a break point on an interrupt.

Syntax :

BPINT int-number [AL|AH|AX=value] [C=count]

int-number Interrupt number from 0 - 5F
hex.

value A byte or a word value.

Comments :

The BPINT command allows breaking on the
execution of a hardware or software interrupt or a
processor exception. By optionally qualifying the AX
register with a value, specific DOS or BIOS calls can
be easily isolated.

If no value is specified, a break point will occur when
the interrupt specified by int-number occurs. This
interrupt can be a hardware, software, or internal
interrupt.

The optional value is compared with the specified
register (AH, AL or AX) when the interrupt occurs. If
the value matches the specified register, then the break
point will occur.

Chapter 4 Using Break Points Commands

When the break point occurs, if the interrupt was a
hardware interrupt or processor exception, the
instruction pointer (CS:EIP) will point to the first
instruction within the interrupt routine. If the interrupt
was a software interrupt, when the break point occurs
the instruction pointer (CS:EIP) will point to the INT
instruction causing the interrupt.

BPINT only works for interrupts that are handled
through the IDT. Currently the IDT contains only
interrupts 0-5FH. Interrupts above this are dispatched
through general protection faults. Also Windows
remaps the hardware interrupts from their usual
vectors. The primary interrupt controller is mapped
from vector 50H-57H. The secondary interrupt
controller is mapped from vector 58H-5FH. For
example, IRQ0 is INT50H and IRQ8 is INT58H.

Note
If a BPINT goes off due to a
software interrupt instruction in a
DOS VM, then single stepping
will go into Windows protected
mode interrupt handlers, and
then eventually control will
return to the DOS VM's interrupt
handle. If you want to go
directly to the DOS VM's
interrupt handler after the
BPINT has occurred on a
software interrupt instruction,
enter G @ &0:int-number*4.

Chapter 4 Using Break Points Commands

Note
Windows only accommodates
interrupts 0 - 5FH in its interrupt
descriptor table. Interrupts
above 5FH cause a general
protection violation, and are
vectored into DOS VM's by
Windows as simulated interrupts.
If you want to set a break point
on an interrupt above 5FH in a
DOS VM, then you must set a
BPX break point on the first
instruction of your interrupt
handler. The easiest way to do
this is to enter BPX @ &0:int-
number*4.

Example :

BPINT 21 AH=4C

This command defines a break point on interrupt 21H.
The break point will occur when DOS function call
4CH (terminate program) is called.

Chapter 4 Using Break Points Commands

BPX

XE "BPX command (Set or clear a break point on
execution)"§XE "Break points:execution"§XE "Execution
break point:clear"§XE "Execution break point:set"§XE
"Clear:interrupt break point"§XE "Point-and-shoot break
point"§XE "Break points:point-and-shoot"§
Set or clear a break point on execution.

Syntax :

BPX [address] [C=count]

Comments :

The BPX command allows you to set or clear a point-
and-shoot execution break point in the code window.
When the cursor is in the code window, the address is
not required. Instead, when you enter the BPX
command, the execution break point is set at the
address of the current cursor location. If an execution
break point has already been set at the address of the
current cursor location, then that break point is cleared
when you enter the BPX command.

If the code window is not visible or the cursor is not in
the code window, then the address must be specified.
If an offset only is specified, then the current CS
register value is used as the segment. Use the EC
command (default key is F6) to move the cursor into
the code window.

Chapter 4 Using Break Points Commands

Address must be the first byte of an instruction opcode.

Examples :

BPX EIP+10

This sets an execution break point at the instruction
10H bytes past the current instruction pointer (CS:EIP).

BPX .1234

This sets an execution break point at source line 1234.

Special Technical Information :

BPX normally places an INT 3 instruction at the break
point address. This is used instead of a break point
register to make more execution break points available.
If your circumstances require the use of a break point
register for some reason (code not yet loaded in a DOS
VM, for example) you can set an execution break point
with the BPM command and specify X as the verb.

If you try to set a BPX at an address that is in ROM, a
break point register is used instead of an INT 3.

BPX break points in DOS VMs are tied to the VM they
were set in. This is normally what you would like
while debugging a DOS program in a DOS VM.
However, there are situations when you may want the
break point to go off at a certain address no matter what
VM is currently mapped in. This is usually true when

Chapter 4 Using Break Points Commands

debugging in DOS or a T&SR that was run before
Windows. In this case, use a BPM break point with the
X verb.

Default Function Key : F9

Chapter 4 Using Break Points Commands

BMSG

XE "BPMSG command (Set a break point on one or more
Windows messages)"§XE "Break points:Windows
messages"§XE "Windows:messages break point"§
Set a break point on one or more Windows messages.

Syntax :

BMSG window-handle [L] [message-range] [C=count]

window-handle A 16-bit handle returned when
the window is created.

message-range Either a single Windows message
or a range of Windows messages
specified by entering the lower
message number followed by a
space followed by the higher
message number. Message
numbers can be specified either
in hexadecimal or by using the
actual ASCII names of the
messages, for example,
WM_QUIT.

L Logs messages to the Soft-
ICE/W command window.

Comments :

The BMSG command allows you to set a break point

Chapter 4 Using Break Points Commands

on the message handler of any window. Break points
can be set either on a single message or on a range of
messages to a specific window. If the L parameter is
specified, Soft-ICE/W will log the messages into the
command window instead of popping up when the
message occurs.

If no message-range is specified, the break point
applies to ALL Windows messages.

You can use the HWND command to get the window
handle.

You may set multiple BMSG break points on one
window-handle, although the ranges may not overlap.

When Soft-ICE/W does pop up on a BMSG break
point, the instruction pointer (CS:EIP) will be on the
first instruction of the message handling procedure.
Each time Soft-ICE/W breaks, the current message will
displayed in the following format:

hWnd=xxxx wParam=xxxx lParam=xxxxxxxx
msg=xxxx ASCII string

These are the parameters that are passed to the message
procedure. All numbers are hexadecimal. The ASCII
string is the name of the message, for example,
WM_PAINT.

Chapter 4 Using Break Points Commands

Note
To get a list of all valid Windows
messages enter the WMSG
command with no parameters.

Examples :

BMSG 9BC WM_MOUSEFIRST
WM_MOUSELAST

This sets a break point on the Window message handler
whose window handle is 9BCH. The break point will
be triggered on any Mouse message.

BMSG F4C L 0 WM_CREATE

This will cause Soft-ICE/W to log all messages
numbered from 0 up to and including WM_CREATE
for the window whose handle is F4CH. Soft-ICE/W
will NOT pop up for these messages. The next time
Soft-ICE/W is popped up, the messages will be
displayed in the command window.

Chapter 4 Using Break Points Commands

CSIP

XE "CSIP command (Set CSEIP memory range qualifier for
all break points)"§XE "Break points:CSEIP memory range
qualifier"§XE "CSEIP memory range qualifier break point"§
Set CS:EIP (instruction pointer) memory range qualifier for all
break points.

Syntax :

CSIP [OFF | [NOT] start-address end-address |
Windows-module-name

NOT When NOT is specified, the
break point will only occur if the
CS:EIP is outside the specified
range.

OFF Turns off CSIP checking.

start-address Beginning of memory range.

end-address End point of memory range.

Windows-module-name If a valid Windows module
name is specified instead of a
memory range, then the range
covers all code areas in the
specified Windows module.

Chapter 4 Using Break Points Commands

Comments :

The CSIP command qualifies break points so that the
code that causes the break point must come from a
specified memory range. This function is often useful
when a program is suspected of accidentally modifying
memory outside of its boundaries.

When break point conditions are met, the instruction
pointer (CS:EIP) is compared with the specified
memory range. If it is within the range, the break point
is activated. To activate the break point only when the
instruction pointer (CS:EIP) is outside the range, use
the NOT parameter.

Since Windows programs are typically broken into
several code segments scattered throughout memory, a
Windows module name can be input as the range. If a
module name is entered, then the range covers all code
segments in the specified Windows program or DLL.

When a CSIP range is specified, it applies to ALL
break points that are currently active.

If no parameters are specified, the current memory
range is displayed.

Example :

CSIP NOT &F000:0 &FFFF:0

This causes break points to occur only if the CS:EIP is
NOT in the ROM BIOS when the break point

Chapter 4 Using Break Points Commands

conditions are met.

CSIP CALC

This causes break points to occur only if they are
caused by the Windows program CALC.

Chapter 4 Using Break Points Commands

4.3 Back Trace Ranges

XE "Back trace ranges" \r "SCTBackTrace"§

4.3.1 Introduction

Soft-ICE/W can collect instruction information in a back trace
history buffer as your program executes. These instructions
can then be displayed after a bug has occurred. This allows
you to go back and retrace a program's action to determine the
actual flow of instructions preceding a break point.

Instruction information is collected on memory accesses within
a specified address range, rather than system wide. Using
specific ranges rather than collecting all instructions is useful
for two reasons:

1. The back trace history buffer is not cluttered by
extraneous information that you are not interested in.
For example, you may be interested in collecting all
the instructions that execute within a particular program
in a DOS VM. But you may not be interested in
interrupt activity and instruction execution within MS-
DOS itself.

2. Back trace ranges degrade system performance while
they are active. By limiting the range to an area that
you are interested in, you can improve system
performance greatly.

Soft-ICE/W has two methods of utilizing the instructions in the
back trace history buffer:

Chapter 4 Using Break Points Commands

1. The SHOW command allows you to display
instructions from the back trace history buffer. You
must specify how many instructions you wish to go
back in the buffer.

2. The TRACE command allows you to single step
forward or backward in time, replaying the actual
program flow. This way you can see the instruction
flow within the context of the surrounding program
code or source code.

4.3.2 Using Back Trace Ranges Across Code Areas

XE "Back trace ranges:across code" \r
"SCTBackTraceCode"§XE "T parameter of BPR" \r
"SCTBackTraceCode"§To use back trace ranges you must do
the following:

1. Allocate a back trace history buffer of the desired size
by inserting the TRA statement in your WINICE.DAT
initialization file or by placing the /TRA switch on the
WINICE.EXE command line. For example, to create a
back trace history buffer of 100K you might have the
following line in your WINICE.DAT file:

TRA = 92

A back trace history buffer of 8K is allocated by
default. Anything specified by the /TRA switch is
added to the 8K. If 8K is suitable for your needs you

Chapter 4 Using Break Points Commands

do not have to allocate a larger buffer.

The history buffer size is limited only by the amount of
extended memory available.

2. Enable back trace ranges by creating a memory range
break point with the T verb. For example:

BPR &1000:0 &2000:0 T

When the T verb is used with the BPR command, it
does not cause break points; instead instruction
information is logged in the back trace history buffer,
and can be displayed later with the SHOW or TRACE
commands

3. Set any other break points if desired.

4. Exit from Soft-ICE/W with the X command.

5. After a break point has occurred, or you have popped Soft-
ICE/W up with the Ctrl D hot key sequence, you can
display instructions in the buffer with the SHOW
command. For example, to go back 50 instructions in the
buffer and display instructions, enter:

SHOW 50

6. To replay a series of instructions you must first enter
trace simulation mode with the TRACE command. To
begin replaying the sequence of instructions starting
back 50 instructions in the buffer, enter:

Chapter 4 Using Break Points Commands

TRACE 50

7. After you have entered trace simulation mode, you can
trace through the sequence of instructions by using the
XT, XP or XG commands. This allows you to re-enact
the program flow. For example, you can single step
through the sequence of instructions in the buffer,
starting at the instruction specified by the TRACE
command, by entering the XT command several times
(default key is Ctrl F8). To single step backwards,
enter XT R (default key is Alt F8).

If you would like to skip over a call use the XP
command (default key is Ctrl F10), or if you would
like to go to a specific address use the XG command.
The XG command searches the buffer for the next
occurrence of the specified address.

8. To exit from trace simulation mode enter:

TRACE OFF

9. To reset the back trace history buffer, use the XRSET
command.

4.3.3 Using Back Trace Ranges Across Data

XE "Back trace ranges:across data" \r
"SCTBackTraceData"§XE "TW parameter of BPR" \r
"SCTBackTraceData"§Back trace ranges can be set up to
watch memory accesses on a specified data area. This is useful

Chapter 4 Using Break Points Commands

if a particular data range is being accessed by several different
sources and you wish to analyze the pattern of access.

To set a back trace range over a data area you must follow the
instructions above shown for back trace range over code areas,
except you must use the TW verb instead of T. When you set
a range with the TW verb, then every instruction that accesses
data in the specified range is collected in the back trace history
buffer.

You can analyze this data with either the SHOW or TRACE
commands as described above, however the TRACE method
can become confusing because there is usually no flow to the
instructions collected.

Note
Soft-ICE for DOS does not allow
back trace ranges over data areas.
Soft-ICE for DOS does allow the
TW attribute, but this enables
"coarse" mode, which Soft-
ICE/W does not support.

4.3.4 Special Notes

While in trace simulation mode, most Soft-ICE/W commands
work as normal, including displaying the memory map, and
displaying and editing data. The exceptions are:

1. Register information is not logged in the back trace
history buffer, so the register values do not change as

Chapter 4 Using Break Points Commands

you trace through the buffer, except for CS and EIP.

2. Commands that normally exit from Soft-ICE/W do not
work while in trace simulation mode. These are X, T,
P, G , HERE, GENINT, and EXIT.

As you peruse instructions from the back trace history buffer
with the SHOW and TRACE commands, you may notice
peculiarities in instruction execution. These are caused by
jumps into and out of the specified range. These usually occur
at jumps, calls, returns and entry points.

When you have a hang problem or other difficult bug that
requires back trace ranges, you may have to use large ranges to
narrow the scope of the problem. Once you have a better idea
of the specific problem area, you can go to smaller ranges.

Large ranges can be very slow, in some cases so slow that you
can not run your program. If this occurs, you should break
each large range up into smaller ranges, then set them one at a
time. Each time you set one of the small ranges, you must
duplicate the bug you are trying to solve.

Chapter 4 Using Break Points Commands

Warning
Ranges that cover interrupt
service routines can stop forward
execution of your program, and
in some cases cause your
program or Windows to overflow
its stack. Forward execution
stops if the interrupting source is
frequent enough to have another
interrupt present before the
previous interrupt has completed.
If the interrupt service routine
allows nested interrupts (most
Windows internal interrupt
service routines allow this), then
you can get stack over-flows as
well.

4.3.5 Implementation Details and Caveats

Soft-ICE/W back trace ranges are implemented with 386/486
paging. This allows memory to be divided into 4K pages, and
each page can be set to have different attributes. Soft-ICE/W
marks pages within the specified range with the not present
attribute so a processor exception occurs when the memory is
accessed. Soft-ICE/W fields this exception, then collects the
data in the back trace history buffer.

In enhanced mode, Windows is using 386/486 paging quite
extensively. Soft-ICE/W shares the page tables and exception
handling with Windows. This adds much more overhead than

Chapter 4 Using Break Points Commands

Soft-ICE for DOS back trace ranges. Because of this sharing,
there are some areas in memory where a back trace range is not
supported. These include the page tables, the GDT, the IDTs,
the LDT, and Soft-ICE/W. If you try to set a range break point
or back trace range over one of these areas, Soft-ICE/W will
warn you.

Since back trace ranges are a form of memory range break
point, any restriction that applies to range break points also
applies to back trace ranges. See the description of the BPR
command on page 120 for more information on this topic.

Soft-ICE/W only collects addresses of instructions, not the
actual instruction itself, in the back trace buffer. Later, when
you view the back trace data with the SHOW or TRACE
command, the data is retrieved to show you Dis-assembled
instructions. If the program you were tracing has been
terminated, or the memory re-used, then the data may no
longer be valid and the display may appear garbled. If you had
source loaded for the area being traced, it will still be valid.

Chapter 4 Using Break Points Commands

4.4 Manipulating Break Points

XE "Manipulate break points" \r "SCTManipBPs"§XE "Break
points:manipulate" \r "SCTManipBPs"§XE
"Commands:manipulate break points" \r
"SCTManipBPs"§Soft-ICE/W provides several commands for
manipulating break points. Manipulation commands allow
listing, modifying, deleting, enabling, disabling and recalling
of break points. Break points are identified by break-numbers,
which are hexadecimal digits from 0 to 1F. The break point
manipulation commands are:

BD Disable break points
BE Enable break points
BL List break points
BPE Edit break point
BPT Use break point as a template
BC Clear break points
BH Break point history

Chapter 4 Using Break Points Commands

BD

XE "BD command (Disable one or more break points)"§XE
"Break points:disable"§XE "Disable break points"§XE
"Deactivate break points"§
Disable one or more break points.

Syntax :

BD list | *

list A series of break-numbers
separated by commas or spaces.

* Disables all break points.

Comments :

The BD command is used to temporarily deactivate
break points. The break points can be reactivated with
the BE (Enable break points) command.

You can tell which of the break points are disabled by
listing the break points with the BL command. A break
point that is disabled will have an asterisk (*) after the
break-number.

Example :

BD 1,3

This command temporarily disables break points 1 and

Chapter 4 Using Break Points Commands

3.

Chapter 4 Using Break Points Commands

BE

XE "BE command (Enable one or more break points)"§XE
"Break points:enable"§XE "Enable break points"§XE
"Activate:break points"§
Enable one or more break points.

Syntax :

BE list | *

list A series of break-numbers
separated by commas or spaces.

* Enables all break points.

Comments :

The BE command is used to reactivate break points that
were deactivated by the BD (Disable break points)
command.

Note that a break point is automatically enabled when it
is first defined or when edited.

Example :

BE 3

This command enables break point 3.

Chapter 4 Using Break Points Commands

BL

XE "BL command (List all break points)"§XE "Break
points:list"§XE "List:all break points"§XE "Break
points:state"§
List all break points.

Syntax :

BL

Comments :

The BL command displays all break points that are
currently set. For each break point, BL lists the break-
number, break point conditions, break point state, and
count.

The state of a break point is either enabled or disabled.
If the break point is disabled, an asterisk (*) is
displayed after its break-number. The break point that
most recently caused an action to occur is highlighted.

The BL command has no parameters.

Example :

BL

This command displays all the break points that have
been defined. A sample display, which shows four
break points, follows:

Chapter 4 Using Break Points Commands

0) BPMB #30:123400 W EQ 0010 DR3 C=03
1) * BPR #30:80022800 #30:80022FFF W C=01
2) BPIO 0021 W NE 00FF C=01
3) BPINT 21 AH=3D C=01

Note that in this example, break point 1 is preceded
with an asterisk (*), showing that it has been disabled.

Chapter 4 Using Break Points Commands

BPE

XE "BPE command (Edit a break point description)"§XE
"Break points:edit"§XE "Break points:modify"§XE "Edit:break
points"§XE "Modify break points"§
Edit a break point description.

Syntax :

BPE break-number

Comments :

The BPE command loads the break point description
into the edit line for modification. The break point
description can then be edited using the editing keys,
and re-entered by pressing the Enter key. This
command offers a quick way to modify the parameters
of an existing break point.

Example :

BPE 1

This command moves a description of break point 1
into the edit line and removes break point 1. Pressing
the Enter key will cause the break point to be re-
entered.

Chapter 4 Using Break Points Commands

BPT

XE "BPT command (Use a break point description as a
template)"§XE "Break points:copy"§XE "Copy a break point"§
Use a break point description as a template.

Syntax :

BPT break-number

Comments :

The BPT command uses an existing break point
description as a template for a new break point.

A description of the existing break point is loaded into
the edit line. The break point description can then be
edited using the editing keys, and entered by pressing
the Enter key. The break point referenced by break-
number is not altered. This command offers a quick
way to create a new break point that is similar to an
existing break point.

Example :

BPT 3

This command moves a template of break point 3 into
the edit line. When the Enter key is pressed, a new
break point is added.

Chapter 4 Using Break Points Commands

BC

XE "BC command (Clear one or more break points)"§XE
"Break points:clear"§XE "Break points:deleteXE "Break
points:remove"§"§XE "Clear:break points"§
Clear one or more break points.

Syntax :

BC list | *

list A series of break-numbers
separated by commas or spaces.

* Clears all break points.

Example :

BC *

This command clears all break points. After this, a BL
command will show no break points until more are
defined.

Chapter 4 Using Break Points Commands

BH

XE "BH command (List and let you select previously set break
points)"§XE "Break points:list previously set"§XE "Break
points:select previously set"§XE "Select previously set break
points"§XE "List:previously set break points"§XE "Break
point history"§
List and allow you to select previously set break points from
the break point history.

Syntax :

BH

Comments :

The BH command is used to recall break points that
have been set in both the current and previous Soft-
ICE/W sessions. All saved break points will be
displayed in the command window and can be selected
using the following keys:

UpArrow This positions the cursor one line
up. If the cursor is on the top
line of the command window the
list is scrolled.

DownArrow This positions the cursor one line
down. If the cursor is on the
bottom line of the command
window, the list is scrolled.

Chapter 4 Using Break Points Commands

Insert This key selects the break point
at the current cursor line, or
deselects it if already selected.

Enter This key sets all selected break
points.

Esc This key exits break point history
without setting any break points.

The last 32 break points are saved by Soft-ICE/W. Each time
Windows exits normally, these
break points are written to the
WINICE.BRK file in the same
directory as WINICE.EXE.
Every time Soft-ICE/W is
loaded, it reads the break point
history from the WINICE.BRK
file.

Example :

BH

This command allows selection of any of the last 32
break points from current and previous Soft-ICE/W
sessions.

Chapter 5 Using Other Commands

Chapter 5 Using Other Commands

µ5.1 Display and Edit Commands...........................120
5.2 Display System Information Commands.........140
5.3 I/O Port Commands..183
5.4 Transfer Control Commands............................186
5.5 Debug Mode Commands..................................198
5.6 Utility Commands..205
5.7 Windowing Commands....................................213
5.8 Debugger Customization Commands...............223
5.9 Screen Control Commands...............................245
5.10 Back Trace History Commands......................250
5.11 Symbol and Source Line Commands..............259

Chapter 5 Using Other Commands

5.1 Display and Edit Commands

XE "Display commands" \r "SCTDispEditC"§XE
"Commands:display" \r "SCTDispEditC"§XE
"Edit:commands" \r "SCTDispEditC"§XE "Commands:edit" \r
"SCTDispEditC"§Commands:

R Display or change registers
U Unassemble instructions
D Display memory in the most

recently specified format
DB Display memory in byte format
DW Display memory in word format
DD Display memory in double word

format
DS Display memory in short real

format
DL Display memory in long real

format
DT Display memory in 10-byte real

format
E Edit memory in the most recently

specified format
EB Edit memory bytes
EW Edit memory words
ED Edit memory double words
ES Edit memory short reals
EL Edit memory long reals

Chapter 5 Using Other Commands

ET Edit memory 10-byte reals
? or H Display help information
VER Display Soft-ICE/W version

number
WATCH Add watch on byte variable
WATCHB Add watch on byte variable
WATCHW Add watch on word variable
WATCHD Add watch on double word

variable
WATCHS Add watch on short real variable
WATCHL Add watch on long real variable
WATCHT Add watch on 10-byte real

variable
CWATCH Clear watch on expression
FORMAT Change data window format
DATA Change data window

Chapter 5 Using Other Commands

R

XE "R command (Display or change register values)"§XE
"Registers:display"§XE "Display:registers"§XE
"Registers:change values"§XE "Change:register values"§XE
"Flags,display or change"§XE "O (Overflow flag)"§XE "D
(Direction flag)"§XE "I (Interrupt flag)"§XE "S (Sign
flag)"§XE "Z (Zero flag)"§XE "A (Auxiliary carry flag)"§XE
"P (Parity flag)"§XE "C (Carry flag)"§XE "Overflow
flag"§XE "Direction flag"§XE "Interrupt flag"§XE "Sign
flag"§XE "Zero flag"§XE "Auxiliary carry flag"§XE "Parity
flag"§XE "Carry flag"§
Display or change the register values.

Syntax :

R [register-name [[=]value]]

register-name Any of the following:

AL, AH, AX, EAX, BL, BH,
BX, EBX, CL, CH, CX, ECX,
DL, DH, DX, EDX, DI, EDI,
SI, ESI, BP, EBP, SP, ESP
IP, EIP, FL, DS, ES, SS, CS
FS or GS.

value If register-name is any name
other than FL, value is a hex
value or an expression. If
register-name is FL, value is a
series of one or more of the

Chapter 5 Using Other Commands

following flag symbols, each
optionally preceded by a plus or
minus sign:

O (Overflow flag)
D (Direction flag)
I (Interrupt flag)
S (Sign flag)
Z (Zero flag)
A (Auxiliary carry flag)
P (Parity flag)
C (Carry flag)

Comments :

If no parameters are supplied, the cursor moves up to
the register window, and the registers can be edited in
place. If the register window is not currently visible, it
is made visible. If register-name is supplied without a
value, the cursor moves up to the register window
positioned at the beginning of the appropriate register
field. For a complete description of editing in the
register window, see "Register Window" on page 29 for
more information.

If both register-name and value are supplied, the
specified register's contents are changed to the value.

To change a flag value, use FL as the register-name,
followed by the symbols of the flag whose values you
want to toggle. To turn a flag on, precede the flag
symbol with a plus sign. To turn a flag off, precede the
flag symbol with a minus sign. The flags can be listed

Chapter 5 Using Other Commands

in any order.

Examples :

R AH=5

This command sets the AH register equal to 5.

R FL=OZP

This command toggles the O, Z, and P flag values.

R FL

This command moves the cursor into the register
window position under the first flag field.

R FL=O+A-C

This command toggles the O flag value, turns on the A
flag value, and turns off the C flag value.

Chapter 5 Using Other Commands

U

XE "U command (Unassemble instructions)"§XE "Unassemble
instructions"§XE "Display:source code"§XE
"Display:unassembled code"§XE "Source:display"§
Unassemble instructions.

Syntax :

U [address]

Comments :

The U command displays either source code or
unassembled code at the specified address. The code
will be displayed in the current mode of the code
window, either code, mixed or source. Source can be
displayed only if it is available for the specified
address. To change the mode of the code window, use
the SRC command (default function key = F3).

If address is not specified, the command unassembles
at the address starting at the first byte after the last byte
unassembled by a previous unassemble command, or
the instruction following the last instruction in the code
window.

If the code window is visible, the instructions are
displayed in the code window, otherwise they are
displayed in the command window. In the command
window either eight lines will be displayed, or one less
than the length of the command window.

Chapter 5 Using Other Commands

If you wish to make the code window visible, use the
WC command (default key = Alt F3). If you wish to
move the cursor to the code window, use the EC
command (default key = F6).

If the instruction is at the current CS:EIP, it is
displayed using the reverse video attribute. If the
current CS:EIP instruction is a relative jump, it will
contain either the string (JUMP) or (NO JUMP)
indicating whether or not the jump will be taken. If the
current CS:EIP instruction references a memory
location, the contents of the memory location will be
displayed in the register window beneath the flags field.
If the register window is not visible, this value is
displayed on the end of the code line.

If a break point is set on an instruction being displayed,
then it is displayed using the bold attribute.

If any of the memory addresses within an instruction
have a corresponding symbol, then the symbol is
displayed instead of the hexadecimal address. If an
instruction is located at a code symbol, then the symbol
name is displayed on the line above the instruction.

The actual hexadecimal bytes of the instruction can be
viewed or suppressed using the CODE command.

Example :

U EIP-10

Chapter 5 Using Other Commands

This command unassembles instructions beginning at
10 hexadecimal bytes before the current address.

U .121

This command displays source in the code window
starting at line number 121.

Chapter 5 Using Other Commands

D, DB, DW, DD, DS, DL, DT

XE "D,DB,DW,DD,DS,DL,DT commands (Display
memory)"§XE "Display:memory"§XE "Memory:display"§
Display memory.

Syntax :

D[size] [address]

size B, W, D, S, L, or T.
B -- Byte
W -- Word
D -- Double Word
S -- Short Real
L -- Long Real
T -- 10-Byte Real

Comments :

The D command displays the memory contents at the
specified address.

The contents are displayed in the format of the size
specified. If no size is specified, the last size used will
be displayed. The ASCII representation is also
displayed for the byte, word, and double word
hexadecimal formats.

For the double word format, data can be specified in
two different ways. If the displayed segment is a 32-bit
segment the dwords will be displayed as 32-bit

Chapter 5 Using Other Commands

hexadecimals (eight hexadecimal digits). If the
displayed segment is a 16-bit segment (VM segment or
LDT selector) the dwords will be displayed as 16:16
pointers (four hexadecimal digits ':' four more
hexadecimal digits).

If address is not specified, the command displays
memory at the address starting at the first byte after the
last byte displayed in the current data window.

If the data window is visible, the data is displayed
there, otherwise it is displayed in the command
window. In the command window either eight lines
will be displayed, or one less than the length of the
window.

For floating point values, numbers can be displayed in
the following format:
[leading sign] decimal-digits . decimal-digits E sign
exponent

The following ASCII strings can also be displayed for
real formats.

String Exponent Mantissa Sign

Not A Number all 1's NOT 0 +/-

Denormal all 0's NOT 0 +/-

Invalid 10 byte only with mantissa=0

Chapter 5 Using Other Commands

Infinity all 1's 0 +/-

Example :

DW ES:1000

This command displays, in word format and in ASCII
format, the memory starting at address ES:1000H.

Also see the DEX, DATA and WD commands.

Chapter 5 Using Other Commands

E, EB, EW, ED, ES, EL, ET

XE "E,EB,EW,ED,ES,EL,ET commands (Edit memory)"§XE
"Edit:memory"§XE "Change:memory"§XE "Memory:edit"§
Edit memory.

Syntax :

E[size] [address [data-list]]

size B, W, D, S, L, or T.
B -- Byte
W -- Word
D -- Double Word
S -- Short Real
L -- Long Real
T -- 10-Byte Real

data-list List of data objects of the
specified size (bytes, words,
double words, short reals, long
reals, or 10-byte reals) or quoted
strings separated by commas or
spaces. The quoted string can be
enclosed with single quotes or
double quotes.

Comments :

If no data-list is specified, the cursor moves into the
data window and the memory can be edited in place. If
the data window is not currently visible, it is made

Chapter 5 Using Other Commands

visible. Both ASCII and hexadecimal edit modes are
supported. To toggle between the ASCII and
hexadecimal display areas, press the Tab key. For a
complete description of editing in the data window, see
"Data Window" on page 33 for more information.

If no size is specified, the last size used will be
assumed.

If a data-list is specified, the memory is immediately
changed to its new values.

Valid floating point numbers can be entered in the
following format:
[leading sign] decimal-digits . decimal-digits E sign
exponent

An example of a valid floating point number is -
1.123456 E-19 .

Examples :

EB DS:1000

This command will move the cursor into the data
window for editing. The starting address in the data
window will be at DS:1000H, and the data will be
displayed in hexadecimal byte format as well as in
ASCII. The initial edit mode will be hexadecimal.

EB DS:1000 'Test String',0

This command will move the null terminated ASCII

Chapter 5 Using Other Commands

string 'Test String' into memory at location DS:1000H.

ES DS:1000 3.1415

This command will move the short real number 3.1415
into the memory location DS:1000H.

Chapter 5 Using Other Commands

? or H

XE "H command (Display help information)"§XE "?
command (Display help information)"§XE "Display:help
information"§XE "Help information"§
Display help information.

Syntax :

? [command | expression]
or

H [command | expression]

Comments :

The ? command and the H command both display help
information.

If no parameters are specified, help displays short
descriptions of all the commands and operators.

If command is specified, help displays more detailed
information on the specified command, including the
command syntax and an example.

If expression is specified, the expression is evaluated
and the result is displayed in hexadecimal, decimal and
ASCII.

Examples :

? ALTKEY

Chapter 5 Using Other Commands

This command displays information about the
ALTKEY command, including its syntax and an
example.

H 10*4+3

This command displays '43' , '67' and 'C'. These are the
hexadecimal, decimal, and ASCII representations of the
value of the expression "10*4+3".

Default Function Key : F1

Chapter 5 Using Other Commands

VER

XE "VER command (Display Soft-ICE/W version
number)"§XE "Display:Soft-ICE/W version number"§XE
"Soft-ICE/W:version number"§
Display the Soft-ICE/W version number.

Syntax :

VER

Example :

VER

This command displays the Soft-ICE/W version
number, the Nu-Mega Technologies,Inc. copyright
message, then the name of the registered user and the
product serial number.

Chapter 5 Using Other Commands

WATCH, WATCHB,
WATCHW, WATCHD,
WATCHS, WATCHL,

WATCHT

XE
"WATCH,WATCHB,WATCHW,WATCHD,WATCHS,W
ATCHL,WATCHT commands (Add a watch
expression)"§XE "Watch expressions:add"§XE "Watch
number"§
Add a watch expression.

Syntax :

WATCH [size] expression

size B, W, D, S, L, or T.

B -- Byte
W -- Word
D -- Double Word
S -- Short real
L -- Long real
T -- 10-Byte Real

Comments :

The WATCH commands are used to display the results
of expressions. The results of the expression are
displayed in the format of the size specified. If no size
is specified, byte will be assumed. The expressions

Chapter 5 Using Other Commands

being watched are displayed in the watch window.
There can be up to eight watch expressions at a time.
Every time the Soft-ICE/W screen is popped up, the
watch window will display the expressions' current
values.

Each line in the watch window contains the following
information:

• A watch-number from 0 through 7. The only purpose of this
number is for use by the clear watch command (CWATCH).

• The expression being evaluated.

• The hexadecimal address of the expression.

• The current value of the expression displayed in the
appropriate format.

If the address corresponding to the expression is
marked not present in the page tables, then ?? will be
displayed in the value field.

Example :

WATCHW FooVariable

This command creates a word-size entry in the watch
window for the variable FooVariable. A sample of
what would appear in the watch window follows:

0) FooVariable #93D:288 0080

Chapter 5 Using Other Commands

This line indicates that FooVariable's current value is
80H and the current address is 93D:288.

WATCHD DS:ESI

This command creates a dword-size entry in the watch
window and displays the dword pointed to by the
DS:ESI registers as shown below:

0) DS:ESI #0CE5:0000153B 0704:0000

Also see the CWATCH and WW commands.

Chapter 5 Using Other Commands

CWATCH

XE "CWATCH command (Clear a watch expression)"§XE
"Clear:watch expression"§XE "Watch expressions:clear"§
Clear a watch expression.

Syntax :

CWATCH list | *

list This is a list of watch-numbers
from 0-7 separated by commas.
Watch-numbers are the numbers
displayed on the beginning of
each line in the watch window.

* Clear all watch expressions.

Comments :

The CWATCH command is used to clear one or more
watch expressions from the watch window. After
clearing the expressions, the ones still remaining in the
window are renumbered sequentially starting at 0. If
there are no more watch expressions remaining, the
window disappears.

Example :

CWATCH 1,3

This command clears the first and third watch

Chapter 5 Using Other Commands

expressions from the watch window.

Chapter 5 Using Other Commands

FORMAT

XE "FORMAT command (Change the format of the data
window)"§XE "Data window:change format"§XE
"Change:data window format"§
Change the format of the data window.

Syntax :

FORMAT

Comments :

The FORMAT command is used to change the display
format in the currently displayed data window. The
formats are changed in the order byte, word, dword,
short real, long real, 10-byte real and then starting back
at byte. This command is most useful when assigned to
a function key. The default function key assignment is
Shift F3. Shift F3 is also supported when editing in
the data window.

Example :

FORMAT

This command changes the data window to the next
data format.

Default Function Key : Shift F3

Chapter 5 Using Other Commands

DATA

XE "DATA command (Change to display another data
window)"§XE "Data window:display another"§XE
"Change:data window"§
Change to display another data window.

Syntax :

DATA [window-number]

window-number The number of the data window
you want to view. This can be 0,
1, 2 or 3.

Comments :

Soft-ICE/W supports up to four data windows. Each
data window can display a different address in any
format. Only one data window is visible at any time.
The DATA command is used to change the current data
window. Specifying DATA without a parameter just
switches to display the next data window. The
windows are numbered from 0 to 3 and this number is
displayed on the right hand side of the line above the
data window. If a window-number is specified after the
DATA command, Soft-ICE/W switches to display that
window. DATA is probably most useful when
assigned to a function key. Its default function key
assignment is F12.

Example :

Chapter 5 Using Other Commands

DATA 3

This command changes the data window to data
window number 3.

Default Function Key : F12

Chapter 5 Using Other Commands

5.2 Display System Information Commands

XE "Display:system information" \r "SCTDispSysC"§XE
"Commands:display system information" \r
"SCTDispSysC"§Commands:

GDT Display Global Descriptor Table
LDT Display Local Descriptor Table
IDT Display Interrupt Descriptor

Table
TSS Display Task State Segment &

I/O port hooks
CR Display control registers
MOD Display Windows module list
HEAP Display Windows global heap
LHEAP Display Windows local heap
VXD Display Windows VxD map
TASK Display Windows task list
STACK Display a call stack
VCALL Display VxD calls
WMSG Display Windows messages
PAGE Display page table information
PHYS Display all virtual addresses for a

physical address
MAP Display virtual machine memory

map
HWND Display information on Windows

handles.

Chapter 5 Using Other Commands

CLASS Display information on Windows
classes.

VM Display information on virtual
machines.

Chapter 5 Using Other Commands

GDT

XE "GDT command (Display the Global Descriptor
Table)"§XE "Global Descriptor Table display"§XE
"Display:GDT"§
Display the Global Descriptor Table.

Syntax :

GDT [selector]

selector This is the starting GDT selector
to display.

Comments :

This command displays the contents of the Global
Descriptor Table. If an optional selector is specified,
the display will begin at that selector. If the starting
selector is an LDT selector (bit 2 is a 1) Soft-ICE/W
will automatically display the LDT rather than the
GDT. At the top of the display, the flat base address of
the GDT along with the limit will be displayed. Each
line of the display contains the following information:

selector value The lower two bits of this value
will reflect the descriptor
privilege level.

selector type This can be one of the following:

Code16 16-bit code selector

Chapter 5 Using Other Commands

Data16 16-bit data selector
Code32 32-bit code selector
Data32 32-bit data selector
LDT Local Descriptor Table selector
TSS32 32-bit Task State Segment

selector
TSS16 16-bit Task State Segment

selector
CallG32 32-bit Call Gate selector
CallG16 16-bit Call Gate selector
TaskG32 32-bit Task Gate selector
TaskG16 16-bit Task Gate selector
TrapG16 16-bit Trap Gate selector
IntG32 32-bit Interrupt Gate selector
IntG16 16-bit Interrupt Gate selector
Reserved Reserved selector

selector base Flat virtual base address of the selector

selector limit Size of this selector

selector DPL The selector's descriptor
privilege level (DPL), which can
be either 0, 1, 2 or 3.

present bit A 'P' or 'NP' indicating whether the selector is
present or not present.

segment attributes One of the following:

RW Data selector is readable and writeable.
RO Data selector is read only.

Chapter 5 Using Other Commands

RE Code selector is readable and
executable.

EO Code selector is execute only.
B TSS's busy bit is set.

Example :

GDT

This command will display the Global Descriptor Table
in the command window.

Chapter 5 Using Other Commands

LDT

XE "LDT command (Display the Local Descriptor
Table)"§XE "Local Descriptor Table display"§XE
"Display:LDT"§
Display the Local Descriptor Table.

Syntax :

LDT [selector]

selector This is the starting LDT selector to display.

Comments :

This command displays the contents of the Local
Descriptor Table by reading the LDT register. If there
is no LDT, an error message will be displayed. If an
optional selector is specified, the display will begin at
that selector. If the starting selector is a GDT selector
(bit 2 is 0) then the GDT is displayed rather than the
LDT. At the top of the display, the flat base address of
the LDT along with the limit will be displayed. Each
line of the display contains the following information:

selector value The lower two bits of this value will reflect
the descriptor privilege level.

selector type This can be one of the following:

Code16 16-bit code selector

Chapter 5 Using Other Commands

Data16 16-bit data selector
Code32 32-bit code selector
Data32 32-bit data selector
CallG32 32-bit Call Gate selector
CallG16 16-bit Call Gate selector
TaskG32 32-bit Task Gate selector
TaskG16 16-bit Task Gate selector
TrapG16 16-bit Trap Gate selector
IntG32 32-bit Interrupt Gate selector
IntG16 16-bit Interrupt Gate selector
Reserved Reserved selector

selector base Flat virtual base address of the selector.

selector limit Size of this selector.

selector DPL The selector's descriptor
privilege level (DPL), which can
be either 0, 1, 2 or 3.

present bit A 'P' or 'NP' indicating whether the selector is
present or not present.

segment attributes One of the following:

RW Data selector is readable and writeable.
RO Data selector is read only.
RE Code selector is readable and

executable.
EO Code selector is execute only.
B TSS's busy bit is set.

Chapter 5 Using Other Commands

Example :

LDT

This command will display the Local Descriptor Table
in the command window.

Chapter 5 Using Other Commands

IDT

XE "IDT command (Display the Interrupt Descriptor
Table)"§XE "Interrupt Descriptor Table,display"§XE
"Display:IDT"§
Display the Interrupt Descriptor Table.

Syntax :

IDT [interrupt-number]

interrupt-number The starting interrupt-number to
display.

Comments :

This command displays the contents of the Interrupt
Descriptor Table by reading the IDT register. If an
optional interrupt-number is specified, the display will
begin at that entry. At the top of the display the flat
base address of the IDT along with the limit will be
displayed. Each line of the display contains the
following information:

interrupt number 0 - 0FFH.

interrupt type One of the following:

CallG32 32-bit Call Gate
CallG16 16-bit Call Gate
TaskG Task Gate

Chapter 5 Using Other Commands

TrapG16 16-bit Trap Gate
TrapG32 32-bit Trap Gate
IntG32 32-bit Interrupt Gate
IntG16 16-bit Interrupt Gate

address Selector:offset of the interrupt handler.

selector's DPLThe selector's descriptor privilege level
(DPL), which can be either 0, 1, 2 or 3.

present bit A 'P' or 'NP' indicating whether the entry
is present or not present.

Example :

IDT

This command will display the Interrupt Descriptor
Table in the command window.

Chapter 5 Using Other Commands

TSS

XE "TSS command (Display task state segment and I/O port
hooks)"§XE "Task state segment:display"§XE
"Display:TSS"§XE "I/O port:display hooks"§XE "Display:I/O
port hooks"§
Display task state segment & I/O port hooks.

Syntax :

TSS

Comments :

This command displays the contents of the task state
segment by reading the task register (TR). The
following information is displayed:

TSS selector value TSS selector number.

selector base Flat virtual base address of the
TSS.

selector limit Size of the TSS.

The next four lines of the display show the contents of the
register fields in the TSS. The following registers are
displayed:

LDT, GS, FS, DS, SS, CS, ES, CR3

Chapter 5 Using Other Commands

EAX, EBX, ECX, EDX, EIP
ESI, EDI, EBP, ESP, EFLAGS
Level 0, 1 and 2 stack SS:ESP

The next portion of the display is the TSS bit mask,
which shows each I/O port that has been hooked by a
Windows virtual device driver (VxD). For each
hooked port, the following information is displayed:

port number The 16-bit port number.

handler address The 32-bit flat address of the I/O
handler. All I/O instructions on the port will be
reflected to this handler.

handler name The symbolic name of the handler. If
symbols are available for the VxD, the nearest symbol
will be displayed, otherwise the name of the VxD
followed by the offset within the VxD will be
displayed.

If we are interested in which VxD has hooked port 21H
(interrupt mask register) we would look at the TSS bit
mask portion of the TSS display and see something like
the following:

0021 800792B4 VPICD+0AF8

This indicates that port 21H is hooked by the virtual
PIC device and the handler is at offset 800792B4 in the

Chapter 5 Using Other Commands

flat code segment. The handler is offset 0AF8H bytes
from the beginning of VPICD's code segment.

Example :

TSS

This command displays the task state segment in the
command window.

Chapter 5 Using Other Commands

CR

XE "CR command (Display the control registers)"§XE
"Control registers display"§XE "Display:control registers"§
Display the control registers.

Syntax :

CR

Comments :

This command displays the contents of the three control
registers CR0, CR2 and CR3 in the command window.

Example :

CR

This command will display the control registers in the
command window. A sample display follows:

CR0=FFFFFFE1
CR2=000CC985
CR3=002FE000

Chapter 5 Using Other Commands

MOD

XE "MOD command (Display the Windows module list)"§XE
"Windows:display:module list"§XE "Display:Windows module
list"§XE "Module list,display"§XE "Display:module list"§
Display the Windows module list.

Syntax :

MOD

Comments :

This command displays the Windows module list in the
command window. A module is a Windows
application or DLL. For each loaded module the
following information is displayed:

module handle A 16-bit handle that Windows
assigns to each module. It is
actually a 16-bit selector of the
module database record which is
similar in format to the EXE
header of the module file.

module name This is up to eight characters in length.

file name The full path and file name of the
module's executable file.

Chapter 5 Using Other Commands

Example :

MOD

An abbreviated sample follows:

hmod=00
E
D

 SYSTEM C:\WINDOWS\SYSTEM\
SYSTEM.DRV

hmod=01
1
D

KE
YB
OA
RD

C:\WINDOWS\SYSTEM\
KEYBOARD.DRV

hmod=01
35

 MOUSE C:\WINDOWS\SYSTEM\
MOUSE.DRV

hmod=01
95

 DISPLAY C:\WINDOWS\SYSTEM\
VGA.DRV

hmod=01
A
D

 SOUND C:\WINDOWS\SYSTEM\
SOUND.DRV

hmod=01
F5

 COMM C:\WINDOWS\SYSTEM\
COMM.DRV

Chapter 5 Using Other Commands

hmod=03
E5

 FONTS C:\WINDOWS\SYSTEM\
VGASYS.FON

hmod=03
E5

 GDI C:\WINDOWS\SYSTEM\
GDI.EXE

hmod=04
25

 USER C:\WINDOWS\SYSTEM\
USER.EXE

hmod=05
7
D

PR
OG
MA
N

C:\WINDOWS\
PROGMAN.EXE

hmod=08
D
5

 CLOCK C:\WINDOWS\
CLOCK.EXE

Chapter 5 Using Other Commands

HEAP

XE "HEAP command (Display the Windows global
heap)"§XE "Windows:display:global heap"§XE
"Display:Windows global heap"§XE "Global heap
display"§XE "Display:global heap"§
Display the Windows global heap.

Syntax :

HEAP [FREE | module-name | selector]

FREE If FREE
is
specified,
only heap
entries
marked as
free will
be
displayed.

module-name This is the name
of the module. If
supplied only
heap entries
belonging to the
module are
displayed.

selector This is an LDT selector. Only a

Chapter 5 Using Other Commands

single heap entry will be
displayed.

Comments :

The HEAP command displays the Windows global
heap in the command window. If no parameters are
specified, the entire global heap is displayed. If FREE
is specified, only the heap entries marked FREE are
displayed. If module-name is specified, only heap
entries belonging to the module will be displayed. If
selector is specified, only the single heap entry
corresponding to the selector will be displayed. At the
end of the listing, the total amount of memory used by
the heap entries that were displayed is shown. If the
current CS:EIP belongs to one of the heap entries, that
entry will be displayed with the bold video attribute.

For each heap entry the following information is
displayed:

selector or handle In Windows 3.0 this is almost the
same thing. Heap selectors all
have a dpl of 1 while the
corresponding handle is the same
selector with a dpl of 2. For
example, if the handle was 106H
the selector would be 105H.
Either of these can be used in an
expression. If 106:0 were used
in a Soft-ICE/W expression,
Soft-ICE/W would convert it to
105:0 when displaying it.

Chapter 5 Using Other Commands

address The 32-bit flat virtual address.

size The size of the heap entry in bytes.

module name The module name of the owner of the
heap entry.

type The type of entry. This can be
one of the following:

Code Non-discardable code segment
Code D Discardable code segment
Data Data segment
ModuleDB Module data base segment
TaskDB Task data base segment
BurgerM Burger Master (The heap itself)
Alloc Allocated memory.
Resource Windows Resource

Additional type information. If the heap entry was a
code or a data segment, the segment number from
the .EXE file will be displayed. If the heap entry was a
resource, one of the following fields can be displayed:

UserDef
Cursor
Bitmap
Icon
Menu
Dialog
String

Chapter 5 Using Other Commands

FontGrp
Font
Accel
ErrTable
CursGrp
IconGrp
NameTabl

Note
If there is no current LDT, then
the HEAP command is unable to
display heap information.

Example :

HEAP kernel

This command would display all heap entries belonging
to the KERNEL module. This would look something
like the following:

Han/Sel Address Length Owner Type Seg/Rsr

00F5 000311C0000004C0KERNEL ModuleD
B

00FD 00031680 00007600 KERNEL Code 01

0575 00054220 00003640 KERNEL Alloc

Chapter 5 Using Other Commands

0106 00083E4000002660 KERNEL Code D 02

010E 805089A
0

00001300 KERNEL Code D 03

0096 80520440 00000C20KERNEL Alloc

Total Memory: 62K

Chapter 5 Using Other Commands

LHEAP

XE "LHEAP command (Display the Windows local
heap)"§XE "Windows:display:local heap"§XE
"Display:Windows local heap"§XE "Local heap display"§XE
"Display:local heap"§
Display the Windows local heap.

Syntax :

LHEAP [selector]

selector This is an
LDT data
selector.

Comments :

The LHEAP command displays the data objects that a
Windows program has allocated on the local heap. If
selector is not specified, the value of the current DS
register is used. The specified selector is usually the
Windows program's data selector. To find this, do a
HEAP command of the Windows program you are
interested in and look for an entry of type data.

If no selector is specified, Soft-ICE/W will use DS.

There are cases when a Windows program will place its
local heap in an allocated memory region or have more
than one local heap. In this case you must find the
selector of the segment that contains the local heap by

Chapter 5 Using Other Commands

other means. Segments marked as alloc in the HEAP
command could contain a local heap.

For each local heap entry the following information is
displayed:

offset The 16-bit offset relative to the
specified selector base address.

size The size of the heap entry in bytes.

type The type of entry. This can be one of the
following:

FIX Fixed (not moveable)
MOV Moveable
FREE Available memory

At the end of the list, the total amount of memory in the local
heap is displayed.

Example :

LHEAP 546

This command would display all local heap entries
belonging to the data selector 546. The display would
look something like the following:

Offset Size Type

0AB8 0088 FIX

Chapter 5 Using Other Commands

0B40 0088 FIX

0BC8 045C FREE

1024 0350 MOV

1374 01AC FREE

1520 0054 MOV

Used: 2.7K

Chapter 5 Using Other Commands

VXD

XE "VXD command (Display the Windows VxD map)"§XE
"Windows:display:VxD map"§XE "Display:Windows global
heap"§XE "VxD:map display"§XE "Display:VxD map"§XE
"Virtual device drivers map:display"§XE "Display:virtual
device drivers map"§
Display the Windows VxD map.

Syntax :

VXD [VxD-name]

VxD-name The name of a virtual device
driver.

Comments :

This command displays a map of all Windows virtual
device drivers in the command window. If no
parameters are specified, all VxD's are displayed. If a
VxD-name is specified, only that VxD will be
displayed. If the current CS:EIP belongs to one of the
VxD's in the map, that line will be displayed with the
bold video attribute.

Each entry in the VxD map contains the following
information:

VxD name Name of the VxD.

address The flat 32-bit address of the

Chapter 5 Using Other Commands

VxD.

size The length of the VxD. This
includes both the code and the
data of the VxD group.

code selector The flat code selector.

data selector The flat data selector.

type Either LGRP or IGRP. LGRP is
the permanent code and data for
the VxD. IGRP is the
initialization code and data for
the VxD. IGRP addresses are
only valid during the three
phases of VxD initialization.
After initialization is complete,
IGRP code and data are
discarded.

Example :

VXD

This command displays the VxD map in the command
window. The first few lines of the display would look
something like the following:

VxDName Address Length Code Data Type

VMM 80001000 000193D00028 0030 LGRP

Chapter 5 Using Other Commands

VMM 80200000 00002F1C0028 0030 IGRP

LoadHi 8001A3d0000007E8 0028 0030 LGRP

LoadHi 80202F1C00000788 0028 0030 IGRP

WINICE 8001ABB
8

00027875 0028 0030 LGRP

CV1 80042430 0000036B0028 0030 LGRP

VDDVGA 8004279C00007AD
8

0028 0030 LGRP

VDDVGA 802036A8000005E
C

0028 0030 IGRP

The VxD names in the table above can be used as
symbol names. This is especially useful when setting
break points at the entry points of these VxD service
routines.

Chapter 5 Using Other Commands

TASK

XE "TASK command (Display the Windows task list)"§XE
"Windows:display:task list"§XE "Display:Windows task
list"§XE "Task list display"§XE "Display:task list"§
Display the Windows task list.

Syntax :

TASK

Comments :

This command displays information about all tasks that
are running in the enhanced Windows environment.
The task that currently has the focus is displayed with
an asterisk after the task name. For each running task,
the following information is displayed:

The task name.

The stack address (SS:SP) of the task when it
last relinquished control. This is not useful for
the current task since SP probably has changed
since the last time control was relinquished.

The top of stack offset.

The bottom of stack offset. SP cannot go below
this.

The lowest SP has ever been when control was

Chapter 5 Using Other Commands

relinquished.

The selector for the task data base segment.

The queue handle for the task. This is just the
selector for the queue.

If you want Soft-ICE/W to pop up when a non-active
task is re-started, you can use the STACK command to
find the address to set the execution break point. To do
this enter STACK followed by the task name. The
bottom line of the call stack will show an address
preceded by the word 'at'. This is the address of the
CALL instruction the program made to Windows, but it
has not yet returned. You must set an execution break
point at the address following this call.

You can also use this technique to stop at other routines
higher on the call stack. This is useful when you don't
want to single step through all of the library code until
execution resumes in your program's code.

The TASK command is also very useful when you get
a Windows general protection fault. Using the TASK
command will let you know which program caused the
fault.

Example :

TASK

Sample output follows:

Chapter 5 Using Other Commands

TaskNm. SS:SP Top Bott. Low TskDBhQueue

WINOLD
A
P

09FD:196
6

1A80 0716 1316 09BD 09D5

PROGM
A
N

080D:185
4

18E0 0576 0D22 056D 06F5

CLOCK 090D:146
A

150E 01A4 0D14 08E5 08FD

NOTEPA
D

0B35:1A
A
A

1B38 07CE 13D6 0ADD 0AF5

Chapter 5 Using Other Commands

STACK

XE "STACK command (Display the call stack)"§XE
"Windows:display:task call stack"§XE "Display:Windows task
call stack"§XE "DOS program call stack,display"§XE
"Display:DOS program call stack"§
Display the call stack for a DOS program or Windows task.

Syntax :

STACK [task-name | SS:BP]

task-name The name of the task as
displayed by the task command.

SS:BP The SS:BP of a valid
stack frame.

Comments :

This command displays a call stack for a DOS
program or a Windows task. If you enter STACK with
no parameters, then the current SS:BP will be used as a
base for the stack frame. If you are using STACK to
display a the stack of a Windows task that is not the
current task, then either a task-name or a valid SS:BP
stack frame must be specified. A list of running tasks
can be obtained with the TASK command. The current
task (marked with an '*') should not be used since the
last known SS:SP is no longer correct.

The STACK command walks the stack showing the

Chapter 5 Using Other Commands

address of each routine. If the routine is found in the
current symbol table then its name is displayed. If it is
not in the symbol table then the export list and module
name list are searched in that order. If stack variables
are present, then they are displayed as well.

Each entry of the call stack contains the following
information:

• Symbol name or module name.
• The CS:IP value of this entry.
• The source line number if available.
• The address of the first line of this routine or the name of the

routine that was called to reach this routine.

If stack variables are available for this entry then the
following information about each is displayed:

• BP relative offset.
• Stack variable name.
• Data in the stack variable if it is of type char, int or long.

The STACK command is not valid in PROT32 mode.

Example :

STACK

This is the output of the STACK command after a
break point is set in the message handler of a Windows
program.

__astart at 0935:1021 [?]

Chapter 5 Using Other Commands

WinMain at 0935:0d76 [00750]
[BP+000C] hInstance 0935
[BP+000A] hPrev 0000
[BP+0006] lpszCmdLine
[BP+0004] CmdShow
[BP-0002] width 00DD
[BP-0004] hWnd 00E5

USER(08) at 05CD:06A7 [?] through USER!
SENDMESSAGE
USER(01) at 0595:04A0 [?] through 0595:048b
USER(06) at 05BD:1A83 [?] through 05BD:1A60
=>ClockWndProc at 0935:006F [0179] through USER!
SENDMESSAGE

[BP+000E] hWnd 1954
[BP+000C] message 0024
[BP+000A] wParam 0000
[BP+0006] lParam 06ED:07A4
[BP-0022] ps 0000

Chapter 5 Using Other Commands

VCALL

XE "VCALL command (Display the names and addresses of
VxD callable routines)"§XE "VxD:callable routines,display
names and addresses"§XE "Display:VxD callable routines'
names and addresses"§
Display the names and addresses of VxD callable routines.

Syntax :

VCALL [partial-name*]

partial-name A VxD callable routine name or
the first few characters of the
name followed by '*'. If '*' is the
last character of the string then
all routines that start with the
specified characters will be
displayed.

Comments :

This command displays the names and addresses of
Windows VxD callable routines. These are Windows
services provided to VxD's. All of these routines are
located in enhanced Windows standard VxD's. Most of
the routines are located in VMM. If the VxD callable
routine is not in VMM, its name is prefaced by the
name of the VxD.

The addresses displayed are not valid until the VMM
VxD has been initialized. If the X is removed from the

Chapter 5 Using Other Commands

INIT string, and Soft-ICE/W pops up when loading,
the addresses are not valid at that point.

Example :

VCALL Call*

This would display all VxD calls that start with "Call".
A sample output for this command follows:

80006E04Call_When_VM_Returns
80009FD4 Call_Global_Event
80009FF4Call_VM_Event
8000A018 Call_Priority_VM_Event
8000969CCall_When_VM_Ints_Enabled
800082C0Call_When_Not_Critical
8000889F Call_When_Task_Switched
8000898CCall_When_Idle

Chapter 5 Using Other Commands

WMSG

XE "WMSG command (Display the names and message
numbers of Windows messages)"§XE
"Windows:display:messages names"§XE
"Windows:display:messages numbers"§XE "Display:Windows
messages' names and message numbers"§
Display the names and message numbers of Windows
messages.

Syntax :

WMSG [partial-name*]

partial-name A Windows message name or the
first few characters of a
Windows message name
followed by '*'. If '*' is the last
character of the string then all the
Windows messages that start
with the specified characters will
be displayed.

Comments :

This command displays the names and message
numbers of Windows messages. This command is
useful when logging or setting break points on
Windows messages with the BMSG command.

Example :

Chapter 5 Using Other Commands

WMSG WM_GET*

This command displays the names and message
numbers of all Windows messages that start with
"WM_GET". A sample output for this command
follows:

000D WM_GETTEXT
000E WM_GETTEXTLENGTH
0024 WM_GETMINMAXINFO
0031 WM_GETFONT
0087 WM_GETDLGCODE

Chapter 5 Using Other Commands

PAGE

XE "PAGE command (Display page table information)"§XE
"Page table information,display"§XE "Display:page table
information"§XE "Virtual address,find"§XE "Physical
addresses:find"§
Display page table information.

Syntax :

PAGE [address [L length]]

address A virtual address, segment:offset
address, or selector:offset address
that you wish to know page table
information about, including the
virtual and physical address.

length Number of pages to be
displayed.

Comments :

The PAGE command has many uses. When address is
specified as a parameter it shows the internal data of a
page table entry. This includes the following:

• The virtual address of a segment:offset or
selector:offset address.

• The physical address of a virtual address,
segment:offset address or selector:offset address.

Chapter 5 Using Other Commands

When length is added as a parameter, the PAGE
command shows multiple page table entries.

If no parameters are specified, the PAGE command
shows the page directory. The is a high-level memory
map of windows. The first line displayed is the address
of the page directory itself. Each following line
displays the information in each page directory entry.

Technical Note
In the 386/486 architecture each
page directory entry refers to a
single page table, and each page
table contains 1024 entries. Each
entry represents a 4K page, so
each page table controls four
megabytes of memory.

The following specific information is displayed by the
PAGE command:

physical address If the page directory is being
displayed then this is the physical address of the page
table that this page director entry refers to. Each page
directory entry references one page table which
controls 4 megabytes of memory.

If specific pages are being
displayed, then this is the
physical address that corresponds
to address.

Chapter 5 Using Other Commands

If length was entered, then the
physical addresses for each entry
are the physical addresses of start
of the page.

linear address If the page directory is being displayed then
this is the virtual address of the page table entry. This
is the address you would use in Soft-ICE/W if you
wanted to display the page table entry with the D
command.

If specified pages are being
displayed, this is virtual address.
If length was entered then this is
the virtual address of the start of
the page.

attribute This is the attribute of the page directory or page
table entry. Valid attributes are:

P Present
D Dirty
A Accessed
U User

type Each page directory entry has a three bit field that can
be used by the operating system to classify page tables.
Windows classifies page tables into the following six
categories:

Chapter 5 Using Other Commands

System
Instance
VM
Private
Relock
Hooked

If a page is marked Not Present, then all that is displayed is NP
followed by the 32-bit contents of the page table entry.

Examples:

PAGE

PAGE with no parameters displays page directory
information. The following is a sample PAGE
command output :

Page Directory Physical = 002B6000 Linear = 006B600

Physical Linear Attribute Type Linear
Add.Rng
e

002B7000 006B7000P A U System00000000-
003FFFF
F

00109000 00509000 P A U System00400000-
007FFFF
F

0010A000 0050A00 P U System00800000-

Chapter 5 Using Other Commands

0 00BFFFF
F

0010B000 0050B000P U System00C00000-
00FFFFF
F

0010C000 0050C000P U System01000000-
013FFFF
F

002B8000 006B8000P A U System80000000-
803FFFF
F

00106000 00506000 P A U System80400000-
807FFFF
F

00107000 00507000 P U System80800000-
80BFFFF
F

00108000 00508000 P U System80C00000-
80FFFFF
F

002B7000 006B7000P A U System81000000-
813FFFF
F

Chapter 5 Using Other Commands

PAGE 00106018 L 3

PAGE with an address specified displays the page table
entry that corresponds to that address. In this example,
three page table entries will be displayed starting with
the page table entry that corresponds to address
00106018. Notice that when the length parameter is
specified, the linear address is truncated to the base
address of the memory page that contains address.

Linearl Physical Attribute Type

00106000 00006000 P U VM

00107000 00007000 P U VM

00108000 00008000 P U VM

PAGE #585:263C

In this example PAGE can be used to find both the
virtual and physical address of a selector:offset address.

Linearl Physical Attribute Type

0004A89C 00218442 P U Instance

Chapter 5 Using Other Commands

PHYS

XE "PHYS command (Display all virtual addresses that match
a physical address)"§XE "Virtual address,find"§XE
"Display:virtual addresses that match a physical address"§
Display all virtual addresses that correspond to a physical
address.

Syntax :

PHYS physical-address

physical-address This is an actual memory address
that the 386/486 generates after a
virtual address has been
translated by its paging unit.
This is the address that appears
on the Computer's BUS and is
most important to the
programmer when dealing with
memory mapped hardware
devices like video memory.

Comments :

Windows uses 386/486 paging to alter the relationship
between virtual addresses and physical addresses. In
many cases a physical address range may appear in
more than one page table entry, and therefore more
than one virtual address range.

Example :

Chapter 5 Using Other Commands

PHYS A0000

Physical address A0000 is the start of VGA video
memory. Video memory often shows up in multiple
virtual address in Windows. In this example there are
three different virtual addresses that correspond to
physical A0000 as shown:

000A0000
004A0000
80CA0000

Chapter 5 Using Other Commands

MAP

XE "MAP command (Display memory map of the current
Virtual Machine)"§XE "Memory map of current
VM,display"§XE "Display:memory map of VM"§XE "Virtual
Machine:display memory map"§
Display the memory map of the current Virtual Machine.

Syntax :

MAP [address]

address A segment:offset type address.

Comments :

If address is specified, only one map line is displayed.
If address is not specified then the top line of the
display contains information about the current virtual
machine:

VM id The virtual machine ID. ID1 is
the system VM.

VM handle The 32-bit virtual machine
handle.

CRS pointer The 32-bit client register
structure pointer.

VM address The 32-bit linear address of the

Chapter 5 Using Other Commands

virtual machine. This is the
"high" address of the virtual
machine that is also mapped to
linear address 0.

If the current CS:IP belongs to a MAP entry, that line
will be displayed with the bold video attribute. Each
line of the MAP display contains the following
information:

The segment:offset start address of the
component.

The length of the component in paragraphs.

The owner name of the component.

Note
Windows may have certain pages
of the DOS VM memory mapped
out when you enter the MAP
command. If this occurs, the
output from the MAP command
will terminate with a PAGE
NOT PRESENT message.
Often, just hot-keying out of
Soft-ICE/W and right back in
will cause Windows to map those
pages back in.

Example :

MAP

Chapter 5 Using Other Commands

An abbreviated sample output follows:

ID=01 Handle=80441000 CRS Ptr=80013390
Linear=80C00000

Start Length Name

0000:0000 0040 Interrupt Vector
Table

0040:0000 0030 ROM BIOS
Variables

0070:0000 025D I/O System

02CD:0000 08E6 DOS

0BB5:0012 0000 NU-MEGA

0C8B:0000 00E8 SOFTICE1

0D41:0000 00B6 XMSXXXX0

10D0:0000 038F SMARTAAR

Chapter 5 Using Other Commands

HWND

XE "HWND command (Display information on Windows
handles)"§XE "Windows:display:handle information"§XE
"Display:Windows handle information"§XE "Handle
information display"§XE "Display:handle information"§
Display information on Window handles.

Syntax :

HWND [window-level] [task-name]

window-level Windows hierarchy number. 0 is
the top level, 1 is the next level
and so on. The window levels
represent a parent child
relationship. For example, a
level 1 window has a level 0
parent.

task-name Any currently loaded Windows
Task. These names are available
with the TASK command.

Comments :

This command displays information about all window
handles that are currently in use in the Windows
environment. For each window handle, the following
information is displayed:

Chapter 5 Using Other Commands

Window Handle The window handle is actually an
offset into a data segment in
USER where information is
stored about a window.

Queue Handle A queue handle is actually a
selector of a segment that
contains the message queue for a
window. A standard message
queue can hold up to six
messages.

Queue Owner Task name of the task that owns
this queue.

Class Name Class name or atom of class that
this window belongs to.

Window Procedure Address of the window
procedure for this window.

A common use of the HWND command is to find the
window handle for setting a break point on a window
message. See the BMSG command.

Example :

HWND msword

Chapter 5 Using Other Commands

Sample output follows:

Chapter 5 Using Other Commands

Handle hQueue QOwner Class Procedure

0F4C(0) 087D MSWOR
D

#32769 DESKTOP

 0FD4(1) 080D MSWOR
D

#32768 MENUWN
D

 22C4(1) 087D MSWOR
D

OpusApp 0925:0378

 53E0(2) 087D MSWOR
D

OpusPmt 0945:1514

 2764(2) 087D MSWOR
D

a_sdm_Msf
t

0F85:0010

 2800(3) 087D MSWOR
D

OpusFedt 0F85:0020

 2844(3) 087D MSWOR
D

OpusFedt 0F85:0020

Chapter 5 Using Other Commands

 2428(2) 087D MSWOR
D

OpusIconB
ar

0945:14FE

 2888(2) 087D MSWOR
D

OpusFedt 0945:14D2

Note that the level number is shown in parenthesis following
each handle.

Chapter 5 Using Other Commands

CLASS

XE "CLASS command (Display information on Windows
classes)"§XE "Windows:display:classes information"§XE
"Display:Windows classes information"§XE "classes
information display"§XE "Display:classes information"§
Display information on Window classes.

Syntax :

CLASS [module-name]

module-name Any currently loaded Windows
Module. Not all Windows
Modules have classes registered.

Comments :

This command displays information about all window
classes that have been registered. For each class, the
following information is displayed:

Class Handle The class handle is actually an
offset of a data structure within
USER. It is used to refer to
windows of this class.

Class Name Name that was passed when the
class was registered. If no name
was passed the atom is displayed.

Chapter 5 Using Other Commands

Owner Module that has registered this
window class.

Window Procedure Address of the window
procedure for this window class.

Example :

CLASS msword

Sample output follows:

Chapter 5 Using Other Commands

Handle Name Owner Window Procedure

0F24 #32772 USER TITLEWNDPROC

0EFC #32771 USER SWITCHWNDPROC

0ED4 #32769 USER DESKTOPWNDPRO
C

0E18) MDIClient USER MDICLNTWNDPRO
C

0DDC ComboBox USER COMBOBXWNDPR
OC

0DA0
Com
boLB
ox

USER LBBOXTLWNDPRO
C

Chapter 5 Using Other Commands

0D64 ScrollBar USER SBWNDPROC

0D28 ListBox USER LBOXCTLWNDPRO
C

0CF0 Edit USER EDITWNDPROC

Note that in this case we have symbols for all of the window
procedures because Soft-ICE/W includes all of the exported
symbols from USER.EXE. If a symbol was not available for
the window procedure you would see a hexadecimal address.

Chapter 5 Using Other Commands

VM

XE "VM command (Display information on virtual
machines)"§XE "Display:virtual machines information"§XE
"Virtual machine information"§
Display information on virtual machines.

Syntax :

VM [VM-ID]

VM-ID Index number of this virtual
machine. These numbers start at
1 and 1 is always assigned to the
VM that Windows Apps run in.

Comments :

If no parameters are specified, this command displays
information about each virtual machine. For each
virtual machine, the following information is displayed:

VM Handle The vm handle is actually a flat
offset of the data structure that
holds information about the VM.

Status This is a bit mask that shows
current state information about
the VxD. The values are:

0001H Exclusive mode

Chapter 5 Using Other Commands

0002H Runs in background
0004H In process of creating
0008H Suspended
0010H Partially destroyed
0020H Executing protected mode code
0040H Executing protected mode app
0080H Executing 32-bit protected app
0100H Executing call from VxD
0200H High priority background
0400H Blocked on semaphore
0800H Woke up after blocked
1000H Part of V86 App is pageable
2000H Rest of V86 is locked
4000H Scheduled by time-slices
8000H Idle - has released time slice

High Address Alternate address space for VM.
This is where a VxD typically
accesses VM memory (instead of
0). Note that it is likely for parts
of the VxD to be paged out at
any one time that you pop up
Soft-ICE/W.

VM-ID Index number of this VxD,
starting at 1.

Client Registers The address of the saved
registers of this VM. This

Chapter 5 Using Other Commands

address actually points into the
level 0 stack for this VM.

If a VM-ID is specified as a parameter to the VM
command, then the register values of this VxD are
displayed. These registers are those found in the client
registers area and may not be valid for the current VM
or if the VM is in the process of being interrupted or re-
scheduled. If you pop up while the current VM is
executing, then the registers displayed in the Soft-
ICE/W register window are valid. If you are in the first
few instructions of an interrupt routine, the CS:IP may
be the only registers valid (the others have not been
saved yet).

There are two sets of segment registers displayed plus
EIP and SP. These are for the protected mode context
and the real address mode context of the VM. If the
VM was executing in protected mode last, then the
protected mode registers will be on top, or visa-versa
for V86 mode. The general purpose registers
(displayed below the segment registers) pertain to the
version of the segment registers on top.

In Windows enhanced mode the VM is a unit of
scheduling for the kernel. It can have one protected
mode thread of execution and one V86 mode thread of
execution. Windows, Windows applications and DLL's
all run in the protected mode thread of execution of
VM 1. Therefore a Windows application can not
preempt another Windows application, but a DOS
program running in V86 mode of a separate VM can

Chapter 5 Using Other Commands

preempt a Windows application.

VM's other than VM 1 normally have a V86 thread of
execution only. However, DPMI applications launched
from these VM's can execute in the protected mode
thread.

Usage:

The VM command is very useful while debugging
VxD's, DPMI programs and DOS programs running in
VM's. For example, if the system hangs up while
running a DOS program, you can often find the address
of the last instruction it executed with the VM
command (the CS:EIP shown).

Another more esoteric, but highly valuable use is when
Windows faults all the way back to DOS. There are
times when Windows can not handle a fault and exits
Windows and you end up back at the DOS prompt.

If this happens, duplicate the problem with I1HERE
ON in Soft-ICE/W (Windows executes an INT 1 prior
to returning to DOS). When the fault happens, Soft-
ICE/W will pop up. Use the VM command to find out
the last address of execution and use the CR command
to find the fault address (CR2 contains the fault
address). The ESI register usually points to an error
message at this point.

Example :

Chapter 5 Using Other Commands

VM

Sample output follows:

VM
Ha
ndl
e

Status High
A
dd
r

VM-ID Client
Reg
s

806A1000 00004000 81800000 3 806A8F94

8061A000 00000008 81400000 2 80515F94

80461000 00007060 81000000 1 80013390

Chapter 5 Using Other Commands

5.3 I/O Port Commands

XE "I/O port:commands" \r "SCTIOPortC"§XE
"Commands:I/O port "\r "SCTIOPortC"§Commands:

I or IB Input from byte I/O port
IW Input from word I/O port
O or OB Output to byte I/O port
OW Output to word I/O port

Chapter 5 Using Other Commands

I, IB, IW

XE "I,IB,IW commands (Input a value from an I/O port)"§XE
"I/O port:input a value from"§XE "Hardware port:input a value
from"§XE "Input from I/O port"§
Input a value from an I/O port.

Syntax :

I[size] port

size B or W.

B -- Byte
W -- Word

port A byte or word value.

Comments :

The input from port commands are used to read and
display a value from a hardware port. Input can be
done from byte or word ports. If no size is specified,
the default is B.

Example :

I 21

This command performs an input from port 21, which
is the mask register for interrupt controller one.

Chapter 5 Using Other Commands

O, OB, OW

XE "O,OB,OW commands (Output a value to an I/O
port)"§XE "I/O port:output a value to"§XE "Hardware
port:output a value to"§XE "Output to I/O port"§
Output a value to an I/O port.

Syntax :

O[size] port value

size B or W.

B -- Byte
W -- Word

port A byte or word value.

value A byte for a byte port or a word
for a word port.

Comments :

The output to port commands are used to write a value
to a hardware port. Output can be done to byte or word
ports. If no size is specified, the default is B.

Example :

O 21 FF

Chapter 5 Using Other Commands

This command performs an out to port 21, which masks
off all the interrupts for interrupt controller one.

Chapter 5 Using Other Commands

5.4 Transfer Control Commands

XE "Transfer control commands" \r "SCTTransferC"§XE
"Commands:transfer control "\r "SCTTransferC"§Commands:

X Exit from the Soft-ICE/W screen
G Go to an address
T Trace one instruction
P Program step
HERE Go to the current cursor line
EXIT Force an exit of current program
GENINT Force an interrupt to occur
HBOOT Hard system boot (total reset)

Chapter 5 Using Other Commands

X

XE "X command (Exit from the Soft-ICE/W screen)"§XE
"Soft-ICE/W:exit from screen"§XE "Exit:from the Soft-ICE/W
screen"§
Exit from the Soft-ICE/W screen.

Syntax :

X

Comments :

The X command exits Soft-ICE/W and restores control
to the program that was interrupted to bring up Soft-
ICE/W. The Soft-ICE/W screen disappears. If any
break points have been set, they become active.

If the register window is visible when Soft-ICE/W pops
up, all registers that have been altered since the X
command was issued will be displayed with the bold
video attribute.

Note
While in Soft-ICE/W, pressing
the hot key sequence is
equivalent to entering the X
command.

Default Function Key : F5

Chapter 5 Using Other Commands

G

XE "G command (Go to an address)"§XE "Go to:address"§
Go to an address.

Syntax :

G [=start-address] [break-address]

Comments :

The G command exits from Soft-ICE/W. If break-
address is specified, a single one-time execution break
point is set on that address. In addition, all sticky break
points are armed.

Execution begins at the current CS:EIP unless the start-
address parameter is supplied. In that case execution
begins at start-address. Execution continues until
break-address is encountered, the window pop-up key
sequence is used, or a sticky break point occurs. When
Soft-ICE/W pops up, for any reason, the one-time
execution break point is cleared.

The break-address must be the first byte of an
instruction opcode.

When the specified address is reached, the current
CS:EIP will be the instruction where the break point
was set.

The G command with no parameters behaves the same

Chapter 5 Using Other Commands

as the X command.

The non-sticky execution break point uses an INT 3
style break point.

If the register window is visible when Soft-ICE/W pops
up, all registers that have been altered since the G
command was issued will be displayed with the bold
video attribute.

Example :

G CS:80123456

This command sets a one-time break point at address
CS:80123456H.

Chapter 5 Using Other Commands

T

XE "T command (Trace one instruction)"§XE "Trace one
instruction"§XE "Single step:one instruction"§
Trace one instruction.

Syntax :

T [=start-address] [count]

count Specifies how many times Soft-
ICE/W should single step before
stopping.

Comments :

The T command single steps one instruction by
utilizing the single step flag.

Execution begins at the current CS:EIP unless the start-
address parameter is specified. If start-address is
specified, CS:EIP is changed to start-address prior to
single stepping.

If count is specified, then Soft-ICE/W single steps
count times. When single stepping with a count,
pressing the Esc key will terminate stepping.

If the register window is visible when Soft-ICE/W pops
up, all registers that have been altered since the T
command was issued will be displayed with the bold
video attribute.

Chapter 5 Using Other Commands

If the code window is in source mode, this command
will single step to the next source statement.

Example :

T = CS:1112 8

This command single steps through eight instructions
starting at memory location CS:1112.

Default Function Key : F8

Chapter 5 Using Other Commands

P

XE "P command (Execute one program step)"§XE "Program
step"§
Execute one program step.

Syntax :

P

Comments :

The P command is a logical program step. In assembly
mode, one instruction at the current CS:EIP is executed
unless the instruction is a call, interrupt, loop, or
repeated string instruction. In those cases, the entire
routine or iteration is completed before control is
returned to Soft-ICE/W.

The P command uses the single step flag for most
instructions. For call, interrupt, loop, or repeated string
instructions, a one-time execution break point is used.
In that case, an INT 3 style break point is implemented.

In source mode one source statement is executed. If the
source statement involves calling another procedure,
the call is not followed. The called procedure is treated
like a single statement.

If the register window is visible when Soft-ICE/W pops
up, all registers that have been altered since the P
command was issued will be displayed with the bold
video attribute. For call instructions, this will show

Chapter 5 Using Other Commands

what registers a subroutine has not preserved.

Example :

P
This command executes one program step.

Default Function Key : F10

Chapter 5 Using Other Commands

HERE

XE "HERE command (Go to the current cursor line)"§XE "Go
to:current cursor line"§XE "Current cursor line, go to"§
Go to the current cursor line.

Syntax:

HERE

Comments:

The HERE command executes until the program
reaches the current cursor line. HERE is only available
when the cursor is in the code window. If the code
window is not visible or the cursor is not in the code
window, use the G command instead. Use the EC
command (default key is F6) if you want to move the
cursor into the code window.

To use the HERE command, you place the cursor on
the source statement or assembly instruction that you
wish to execute to. Then enter HERE or press the
function key that HERE is programmed to (the default
is F7).

The HERE command exits from Soft-ICE/W with a
single one-time execution break point set. In addition,
all sticky break points are armed.

Execution begins at the current CS:EIP and continues
until the address of the current cursor position in the

Chapter 5 Using Other Commands

code window is encountered, the window pop-up key
sequence is used, or a sticky break point occurs. When
Soft-ICE/W pops up, for any reason, the one-time
execution break point is cleared.

The non-sticky execution break point uses an INT 3
style break point.

If the register window is visible when Soft-ICE/W pops
up, all registers that have been altered since the HERE
command was issued will be displayed with the bold
video attribute.

Example :

HERE

This example sets an execution break point at the
current cursor position, then exits from Soft-ICE/W and
begins execution at the current CS:EIP.

Default Function Key : F7

Chapter 5 Using Other Commands

EXIT

XE "EXIT command (Force an exit of current program)"§XE
"Force:exit of current program"§XE "Abort current program"§
Force an exit of the current DOS or Windows program.

Syntax:

EXIT

Comments:

The EXIT command attempts to abort the current DOS
or Windows program by forcing a DOS exit function
(INT 21H, function 4CH). This command will only
work if DOS is in a state where it is able to accept the
exit function call. If this call is made from certain
interrupt routines, or other times when the DOS is not
ready , the system may behave unpredictably. This call
can only be used when Soft-ICE/W pops up in VM
mode or 16-bit protected mode. In 32-bit protected
mode an error will be displayed.

Caution:

The EXIT command should be used with care. Since
Soft-ICE/W can be popped up at any time, a situation
can occur where the DOS is not in a state to accept an
exit function call. Also, the EXIT command does not
do any program specific resetting. For instance, the
EXIT command does not reset the video mode or
interrupt vectors. For Windows programs, the EXIT

Chapter 5 Using Other Commands

command does not free resources.

Example :

EXIT

This command will cause the current DOS or Windows
program to exit.

Chapter 5 Using Other Commands

GENINT

XE "GENINT command (Force an interrupt to occur)"§XE
"Force:interrupt to occur"§XE "Interrupt:force to occur"§XE
"Activate:other debuggers"§XE "NMI (Non-Maskable
Interrupt)"§
Force an interrupt to occur.

Syntax :

GENINT [NMI | INT1 | INT3 | interrupt-number]

interrupt-number A valid interrupt number
between 0 and 5FH.

Comments :

The GENINT command forces an interrupt to occur.
This function can be used to hand off control to another
debugger when using Soft-ICE/W with another
software debugger. It can also be used to test interrupt
routines.

The GENINT command simulates the processing
sequence of a hardware interrupt or an INT instruction.
It vectors control through the current IDT entry for the
specified interrupt number.

Example :

GENINT NMI

Chapter 5 Using Other Commands

This forces a non-maskable interrupt. This will give
control back to CodeView for DOS if Soft-ICE/W is
being used as an assistant to CodeView for DOS. If
using CodeView for Windows, use GENINT 0. For
other debuggers, experiment with interrupt-numbers 0,
1, 2 and 3.

Chapter 5 Using Other Commands

HBOOT

XE "HBOOT command (Do a hard system boot)"§XE "Hard
system boot"§XE "Reboot system"§
Do a hard system boot (total reset).

Syntax :

HBOOT

Comments :

The HBOOT command resets the computer system.
Soft-ICE/W is not retained in the reset process.
HBOOT is sufficient unless an adapter card requires a
power-on reset. In those rare cases, the machine power
must be recycled.

HBOOT performs the same level of system reset as
pressing Ctrl Alt Delete when not in Soft-ICE/W.

Example :

HBOOT

This command makes the system reboot.

Chapter 5 Using Other Commands

5.5 Debug Mode Commands

XE "Debug:mode commands" \r "SCTDebugModeC"§XE
"Commands:debug mode"\r "SCTDebugModeC"§Commands:

ACTION Set action after break point is
reached

I1HERE Pop up on embedded INT 1
instructions.

I3HERE Pop up on INT 3 instructions.
ZAP Replace embedded INT 1 or INT

3 with NOP

Chapter 5 Using Other Commands

ACTION

XE "ACTION command (Set action after break point is
reached)"§XE "Set:action after break point is reached"§XE
"Break points:set action after"§XE "Activate:other
debuggers"§
Set action after break point is reached.

Syntax :

ACTION [NMI | INT1 | INT3 | HERE | interrupt-
number | debugger-name]

interrupt-number A valid interrupt number
between 0 and 5FH.

debugger-name The module name of the
Windows application debugger
you wish to gain control on a
Soft-ICE/W break point.

Comments :

The ACTION command determines where control is
given when break point conditions have been met. In
most cases, the ACTION command is used to pass
control to an application debugger you are using in
conjunction with Soft-ICE/W. HERE is used when it
is desired to return to Soft-ICE/W when break
conditions have been met.

INT1, INT3 and NMI are alternatives for activating

Chapter 5 Using Other Commands

DOS debuggers when break conditions are met.
Debugger-name is used to activate Windows
debuggers. The module name of your debugger can be
found with the Soft-ICE/W MOD command.

If debugger-name is specified, an INT 0 will be used to
trigger the Windows debugger. Soft-ICE/W will ignore
break points that the Windows debugger causes if the
debugger accesses memory that is covered by a
memory location or range break point. When Soft-
ICE/W passes control to the Windows debugger with
an INT 0, the Windows debugger will respond as if a
divide overflow occurred and display a message. Since
the INT 0 was not caused by an actual divide overflow,
you can ignore this message.

Example :

ACTION NMI

This will cause Soft-ICE/W to generate a non-maskable
interrupt when break conditions are met. This will give
control to CodeView for DOS if Soft-ICE/W is being
used as an assistant to CodeView for DOS. If using
CodeView for Windows use ACTION CVW. If using
Borland's Turbo Debugger for Windows use ACTION
TDW. If using Multiscope's Debugger for Windows,
use ACTION RTD.

Chapter 5 Using Other Commands

I1HERE

XE "I1HERE command (Pop up on embedded INT 1
instructions)"§XE "Pop up:on embedded INT 1
instructions"§XE "INT 1:pop up on"§
Pop up on embedded INT 1 instructions.

Syntax :

I1HERE [ON | OFF]

Comments :

The I1HERE command lets you specify that any
embedded interrupt 1 will bring up the Soft-ICE/W
screen. This feature is useful for stopping your
program in a specific location. Before popping up,
Soft-ICE/W checks to see that there is really an INT 1
in the code. If there is not, Soft-ICE/W will not pop
up.

To use this feature, place an INT 1 into your code
immediately before the location where you want to
stop. When the INT 1 occurs, it will bring up the Soft-
ICE/W screen. At this point, the current EIP will be
the instruction after the INT 1 instruction.

If no parameter is specified, the current state of
I1HERE is displayed.

The default is I1HERE mode OFF.

Chapter 5 Using Other Commands

VMM, the Windows memory management VxD,
executes INT 1 instructions prior to certain fatal exits.
If you have I1HERE ON, you can trap these. The INT
1's generated by VMM are most often caused by a page
fault with the registers set up as follows: EAX=faulting
address, ESI points to an ASCII message and EBP
points to a CRS (Client Register Structure).

Example :

I1HERE ON

This command turns on I1HERE mode. Any INT 1's
generated after this point will bring up the Soft-ICE/W
screen.

Chapter 5 Using Other Commands

I3HERE

XE "I3HERE command (Pop up on INT 3 instructions)"§XE
"Pop up:on INT 3 instructions"§XE "INT 3:pop up on"§
Pop up on INT 3 instructions.

Syntax :

I3HERE [ON | OFF]

Comments :

The I3HERE command lets you specify that any
interrupt 3 will bring up the Soft-ICE/W screen. This
feature is useful for stopping your program in a specific
location.

To use this feature, place an INT 3 into your code
immediately before the location where you want to
stop. When the INT 3 occurs, it will bring up the Soft-
ICE/W screen. At this point, the current EIP will be
the instruction after the INT 3 instruction.

If you are developing a Windows program, the
DebugBreak() Windows API routine will perform an
INT 3.

If no parameter is specified, the current state of
I3HERE is displayed.

The default is I3HERE mode OFF.

Chapter 5 Using Other Commands

Example :

I3HERE ON

This command turns on I3HERE mode. Any INT 3's
generated after this point will bring up the Soft-ICE/W
screen.

Chapter 5 Using Other Commands

ZAP

XE "ZAP command (Replace embedded int 1 or 3 with a
NOP)"§XE "Replace embedded int 1 or 3 with a NOP"§XE
"INT 3:replace with NOP"§XE "INT 1:replace with NOP"§
Replace an embedded interrupt 1 or 3 with a NOP.

Syntax :

ZAP

Comments :

The ZAP command replaces an embedded interrupt 1
or interrupt 3 with the appropriate number of NOP
instructions. This is useful when the INT 1 or INT 3 is
placed in code that is repeatedly executed and you no
longer want Soft-ICE/W to pop up. This command
will only work if the INT 1 or INT 3 instruction is the
one before the current CS:EIP.

Example :

ZAP

The embedded interrupt 1 or interrupt 3 will be
replaced with NOP instructions.

Chapter 5 Using Other Commands

5.6 Utility Commands

XE "Utility commands" \r "SCTUtilC"§XE
"Commands:utility"\r "SCTUtilC"§Commands:

S Search memory for data
F Fill memory with data
M Move data
C Compare two data blocks
A Assemble code

Chapter 5 Using Other Commands

S

XE "S command (Search memory for data)"§XE
"Search:memory for data"§XE "Memory:search for data"§
Search memory for data.

Syntax :

S [address L length data-list]

data-list List of bytes or quoted strings
separated by commas or spaces.
A quoted string can be enclosed
with single quotes or double
quotes.

length Length in bytes.

Comments :

Memory is searched for a series of bytes or characters
that matches the data-list. The search begins at the
specified address and continues for the length
specified. When a match is found, the memory at that
address is displayed in the data window. and the
message "PATTERN FOUND AT location" is
displayed in the command window. If the data window
is not visible, it is made visible.

To search for subsequent occurrences of the data-list,
use the S command with no parameters. The search
will continue from the address where the data-list was

Chapter 5 Using Other Commands

last found, until it finds another occurrence of data-list
or the length is exhausted.

Note
The S command ignores pages
that are marked not present. This
makes it possible to search large
areas of address space using the
flat data selector (30:).

Examples :

S ES:DI+10 L ECX 'Hello',12,34

This command searches for the string 'Hello' followed
by the bytes 12H and 34H starting at offset ES:DI+10
for a length of ECX bytes.

S 30:0 L FFFFFFFF 'String'

This command searches the entire 4 gigabyte virtual
address range for 'string'.

Chapter 5 Using Other Commands

F

XE "F command (Fill memory with data)"§XE "Fill memory
with data"§XE "Memory:fill with data"§
Fill memory with data.

Syntax :

F address L length data-list

data-list List of bytes or quoted strings
separated by commas or spaces.
A quoted string can be enclosed
with single quotes or double
quotes.

length Length in bytes.

Comments :

Memory is filled with the series of bytes or characters
specified in the data-list. Memory is filled starting at
the specified address and continues for the specified
length. If the data-list length is less than the specified
length, the data-list is repeated as many times as
necessary.

Example :

F DS:8000 L 100 'Test'

This command fills memory starting at location

Chapter 5 Using Other Commands

DS:8000H for a length of 100H bytes with the string
'Test'. The string 'Test' is repeated until the fill length
is exhausted.

Chapter 5 Using Other Commands

M

XE "M command (Move data)"§XE "Move data"§XE
"Memory:move data in"§
Move data.

Syntax :

M start-address L length end-address

length Length in bytes.

Comments :

The specified number of bytes are moved from the
start-address to the end-address.

Example :

M DS:1000 L 2000 ES:5000

This command moves 2000H bytes (8K) from memory
location DS:1000H to ES:5000H.

Chapter 5 Using Other Commands

C

XE "C command (Compare two data blocks)"§XE "Compare
data"§XE "Memory:compare data in"§
Compare two data blocks.

Syntax :

C start-address L length end-address

length Length in bytes.

Comments :

The memory block specified by start-address and
length is compared with the memory block specified by
the end-address and length.

When a byte from the first data block does not match a
byte from the second data block, both bytes are
displayed, along with their addresses.

Example :

C DS:805FF000 L 10 DS:806FF000

This command compares 10H bytes starting at memory
location DS:805FF000H with the 10H bytes starting at
memory location DS:806FF000H.

Chapter 5 Using Other Commands

A

XE "A command (Assemble code)"§XE "Assemble code"§XE
"Code:assemble"§XE "Memory:assemble code in"§XE
"Assembler"§
Assemble code.

Syntax :

A [address]

Comments :

The Soft-ICE/W assembler allows you to assemble
instructions directly into memory. The assembler
supports the standard 386 instruction set. Numeric co-
processor instructions can NOT be assembled.

If address is not specified, then assembly will occur at
the last address where instructions were assembled. If
the A command has not been entered before and
address is not specified then the current CS:EIP address
is used.

The A command enters the Soft-ICE/W interactive
assembler. An address is displayed as a prompt for
each assembly line. After an assembly language
instruction is typed in and Enter is pressed, the
instructions are assembled into memory at the specified
address. Instructions must be entered with standard
Intel format. Press Enter at an address prompt to exit
assembler mode.

Chapter 5 Using Other Commands

If the address range in which you are assembling
instructions is visible in the code window, the
instructions will change interactively as you assemble.

The Soft-ICE/W assembler supports the standard 386
family mnemonics; however, there are some special
additions:

• USE16 or USE32 entered on a separate line will
cause subsequent instructions to be assembled
as 16-bit or 32-bit respectively. If USE16 or
USE32 is not specified, the default is the same
as the mode of the current CS register.

• The DB mnemonic is used to define bytes of
data directly into memory. The DB mnemonic
is followed by a list of bytes and/or quoted
strings separated by spaces or commas.

• The RETF mnemonic represents a far return.

• Override instructions can optionally be placed
on a separate line. For example a code segment
override would be entered as "CS:".

• WORD PTR, BYTE PTR, DWORD PTR, and
FWORD PTR are used to determine data size if
there is no register argument, for example,
MOV BYTE PTR ES:[1234.],1.

• Use FAR and NEAR to explicitly assemble far
and near jumps and calls. If FAR or NEAR is

Chapter 5 Using Other Commands

not specified then all jumps and calls are near.

• Operands referring to memory locations should
be placed in square brackets, for example:
MOV AX,[1234].

Example :

A CS:1234

This command prompts you for assembly instructions,
then assembles them beginning at offset 1234H within
the current code segment. Press Enter at the address
prompt after entering the last instruction.

Chapter 5 Using Other Commands

5.7 Windowing Commands

XE "Windowing commands" \r "SCTWindC"§XE
"Commands:windowing "\r "SCTWindC"§Four window types
may be created with Soft-ICE/W (register, watch, data and
code). Any of these windows can be toggled on or off at any
time. The watch, data and code windows can be of variable
size; the register window is fixed in size. The windows always
remain in a fixed order. Starting from the top of the screen,
the order is register window, watch window, data window and
code window.

Commands:
WR Toggle the register window
WC Toggle/set the size of the code

window
WD Toggle/set the size of the data

window
WW Toggle the watch window
EC Enter/exit the code window
. Locate current instruction in

code window

Chapter 5 Using Other Commands

WR

XE "WR command (Toggle the register window)"§XE
"Toggle:register window"§XE "Register window:toggle"§
Toggle the register window.

Syntax :

WR

Comments :

The WR command makes the register window visible
if it is not currently visible. If the register window is
currently visible, WR removes the register window.

The register window displays the 80386 register set and
the processor flags.

When the register window is made invisible, the extra
screen lines are added to the command window.

When the register window is made visible, the lines are
taken from the other windows in the following order:
command, code, data.

Default Function Key : F2

Chapter 5 Using Other Commands

WC

XE "WC command (Toggle/set the size of the code
window)"§XE "Toggle:code window"§XE "Code
window:toggle"§XE "Set:code window size"§XE "Code
window:set size"§XE "Change:code window size"§
Toggle/set the size of the code window.

Syntax :

WC [window-size]

window-size A decimal number.

Comments :

If window-size is not specified, this command toggles
the code window. If the code window was not visible it
is made visible, and if it was visible it is removed.

If window-size is specified the code window is resized,
or if it was not visible it is made visible with the
specified size.

When the code window is made invisible, the extra
screen lines are added to the command window.

When the code window is made visible, the lines are
taken from the other windows in the following order:
command, data.

If you wish to move the cursor to the code window, use

Chapter 5 Using Other Commands

the EC command (default key = F6). See the
description of the EC command on page 294 for more
details.

Chapter 5 Using Other Commands

Example :

WC 12

If no code window is present, a code window 12 lines
in length is created. If the code window is currently on
the screen, it is resized to 12 lines.

Default Function Key : Alt F3

Chapter 5 Using Other Commands

WD

XE "WD command (Toggle/set the size of the data
window)"§XE "Toggle:data window"§XE "Data
window:toggle"§XE "Set:data window size"§XE "Data
window:set size"§XE "Change:data window size"§
Toggle/set the size of the data window.

Syntax :

WD [window-size]

window-size A decimal number.

Comments :

If window-size is not specified, this command toggles
the data window. If the data window was not visible it
is made visible, and if it was visible it is removed.

If window-size is specified the data window is resized,
or if it was not visible it is made visible with the
specified size.

When the data window is made invisible, the extra
screen lines are added to the command window.

When the data window is made visible, the lines are
taken from the other windows in the following order:
command, code.

If you wish to move the cursor to the data window to

Chapter 5 Using Other Commands

edit data, use the E command. See the description of
the E command on page 171 for more details.

Chapter 5 Using Other Commands

Example :

WD 1

If no data window is present, a data window of one line
is created. If the data window is currently on the
screen, it is resized to one line.

Default Function Key : Alt F2

Chapter 5 Using Other Commands

WW

XE "WW command (Toggle the watch window)"§XE
"Toggle:watch window"§XE "Watch window:toggle"§
Toggle the watch window.

Syntax :

WW

Comments :

The WW command makes the watch window visible if
it is not currently visible. If the watch window is
currently visible WW removes it. If there are no watch
expressions declared, WW does nothing.

The watch window's size is fixed and always contains
one line for each watch expression.

When the watch window is made invisible, the extra
screen lines are added to the command window.

When the watch window is made visible, the lines are
taken from the other windows in the following order:
command, code, data.

If you want to add a watch expression, use one of the
WATCH commands. See the description of the
WATCH commands on page 177 for more details.

Default Function Key : Alt F4

Chapter 5 Using Other Commands

EC

XE "EC command (Enter or exit the code window)"§XE
"Enter:code window"§XE "Exit:code window"§XE "Code
window:enter or exit"§
Enter or exit the code window.

Syntax :

EC

Comments :

The EC command toggles the cursor location between
the code window and the command window. If the
cursor was in the command window it is moved to the
code window, and if the cursor was in the code window
it is moved to the command window.

The code window must be visible for this command to
work. If you wish to make the code window visible,
use the WC command. See the description of the WC
command on page 287 for more details.

When the cursor is in the code window, several options
become available that make debugging much easier.
These options are:

Point-and-shoot break points —Point-and-shoot break
points are set with the BPX
command. If no parameters are
specified with the BPX

Chapter 5 Using Other Commands

command, an execution break
point is set at the location of the
cursor position in the code
window. The default function
key for BPX is F9.

Go to cursor line You can set a temporary break
point at the cursor line and begin
executing with the HERE
command. The default function
key for HERE is F7.

Scrolling the code window — The code window can
be scrolled while the cursor is in
the code window. The scrolling
keys (UpArrow, DownArrow,
PageUp and PageDn) are
redefined while the cursor is in
the code window. When the
cursor is in the code window the
scrolling keys do the following:

UpArrow Scroll code
window up one line.

DownArrow Scroll code
window down one line.

PageUp Scroll window up
one window.

PageDn Scroll window
down one window.

Chapter 5 Using Other Commands

Default Function Key : F6

Chapter 5 Using Other Commands

.

XE ". command (Locate current instruction in code
window)"§XE "Locate current instruction in code
window"§XE "Current instruction,locate"§
Locate the current instruction in the code window.

Syntax :

.

Comments :

When the code window is visible, this command makes
the instruction at the current CS:EIP visible and
highlights it.

To make the code window visible, use the WC
command. See the description of the WC command on
page 287 for more details.

Chapter 5 Using Other Commands

5.8 Debugger Customization Commands

XE "Debugger customization commands" \r
"SCTDebugCustC"§XE "Commands:debugger customization"\
r "SCTDebugCustC"§Commands:

PAUSE Pause after each screen
ALTKEY Set alternate key sequence to

invoke Soft-ICE/W
FKEY Show and edit function key

assignments
DEX Display/assign data window

expression
CODE Display instruction bytes
COLOR Display/set screen colors
TABS Display/set tab settings
SERIAL Redirect console to serial

monitor
LINES Change number of lines of Soft-

ICE/W display
Print-Screen Print contents of screen
PRN Set printer output port

Chapter 5 Using Other Commands

PAUSE

XE "PAUSE command (Pause after each screen)"§XE "Pause
after each screen"§XE "Screen:set pause"§
Pause after each screen.

Syntax :

PAUSE [ON | OFF]

Comments :

The PAUSE command controls screen pause at the end
of each page. If PAUSE is ON, you are prompted to
press any key before information is scrolled out of the
command window. The prompt is displayed in the
status line at the bottom of the command window.

If no parameter is specified, the current state of
PAUSE is displayed.

The default is PAUSE mode ON.

Example :

PAUSE ON

This command specifies that subsequent command
window display will not be automatically scrolled off
the screen. You will be prompted to press a key before
information is scrolled out of the window.

Chapter 5 Using Other Commands

ALTKEY

XE "ALTKEY command (Set an alternate key sequence to
invoke Soft-ICE/W)"§XE "Set:hot key sequence"§XE "Hot
key sequence,change"§XE "Set:pop up key sequence"§XE
"Set:alternate key sequence"§XE "Pop up:set key
sequence"§XE "Ctrl D key sequence"§
Set an alternate key sequence to invoke Soft-ICE/W.

Syntax :

ALTKEY [ALT letter | CTRL letter]

letter Any letter (A - Z).

Comments :

The ALTKEY command allows the key sequence for
popping up Soft-ICE/W to be changed. The key
sequence can be changed to Ctrl + letter or Alt + letter.

Occasionally you may be using a program that conflicts
with the Ctrl D hot key sequence that brings up the
Soft-ICE/W screen. One way to circumvent this
possible problem is to use the ALTKEY command to
change the hot key sequence.

If no parameter is specified, the current hot key
sequence is displayed.

The default hot key sequence is Ctrl D.

Chapter 5 Using Other Commands

Hint
If you want to change your hot
key sequence every time you run
Soft-ICE/W then you should
place the ALTKEY command in
the INIT statement of the
WINICE.DAT initialization file.

Example :

ALTKEY ALT Z

This command specifies that the key sequence Alt Z
will now be used to pop up the Soft-ICE/W screen.

Chapter 5 Using Other Commands

FKEY

XE "FKEY command (Show and edit the function key
assignments)"§XE "Show and edit function key
assignments"§XE "Display:function key assignments"§XE
"Edit:function key assignments"§XE "Function keys:display
assignments"§XE "Function keys:edit assignments"§
Show and edit the function key assignments.

Syntax :

FKEY [function-key string]

function-key F1 - F12 (unshifted function
key),
SF1 - SF12 (shifted function
key),
CF1 - CF12 (Ctrl plus function
key), or
AF1 - AF12 (Alt plus function
key).

string The string consists of any valid
Soft-ICE/W commands and the
special characters (^ and ;). A ^
is placed in the string to make a
command invisible. A ; is placed
in the string in place of the Enter
key.

Comments :

Chapter 5 Using Other Commands

The FKEY command is used to assign a string of one
or more commands to a function-key.

If no parameters are specified, then the current
function-key assignments are displayed.

To unassign a specified function-key, use the FKEY
command with these parameters: a function-key name
followed by a null string.

Using carriage return symbols in a function-key
assignment string allows you to assign a function-key a
series of commands. A carriage return is represented
by a ';' (semi-colon).

If you put a '^' (Shift 6) in front of a function-key
definition, the subsequent command will be invisible.
The command will function as normal, but all
information that would normally be displayed in the
command window (excluding error messages) is
suppressed. The invisible mode is useful when a
command changes information in a window (code,
register or data) but you do not want to clutter the
command window.

Soft-ICE/W implements the function-keys by inserting
the entire string into its keyboard buffer. The function-
keys can therefore be used anyplace where a valid
command could be typed.

If you want a function key assignment to be in effect
every time you use Soft-ICE/W, you can pre-initialize a
function-key in the initialization file WINICE.DAT.

Chapter 5 Using Other Commands

For more information on function-key definitions in
WINICE.DAT, see "WINICE.DAT Initialization File"
on page 18.

Example :

FKEY F2 ^WR;

This command will assign the toggle register window
command to the F2 function-key. The ^ makes the
function invisible, and the ; ends the function with a
carriage return. After this command is entered,
pressing the F2 key will then toggle the register
window on or off.

FKEY CF1 G CS:8028F000;D SS:ESP;U CS:EIP+

This example shows that multiple commands can be
assigned to a single function and that partial commands
can be assigned for the user to complete. After this
command is entered, pressing the Ctrl F1 key sequence
causes the program to execute until location
CS:8028F000H is reached, display the stack contents
and start the U command for the user to complete.

FKEY F1 WD 3;D 100;

After this command is entered, pressing the F1 key
would make the data window 3 lines long and dump
data starting at 100H in the segment currently displayed
in the data window.

WINICE.DAT Example :

Chapter 5 Using Other Commands

F1 = "WR;WD 2;WC 10;"

If this line is placed in WINICE.DAT, when Soft-
ICE/W is loaded it will assign the string to F1. If F1 is
pressed while in Soft-ICE/W, it will toggle the register
window, create a data window of length 2 and a code
window of length 10. For more information on
WINICE.DAT, see "WINICE.DAT Initialization File"
on page 18.

Chapter 5 Using Other Commands

DEX

XE "DEX command (Display or assign a data window
expression)"§XE "Display:data window expression"§XE
"Assign data window expression"§XE "Data window
expression,display or assign"§
Display or assign a data window expression.

Syntax :

DEX [data-window-number [expression]]

data-window-number A number from 0 to 3 indicating
which data window to use. This
number is displayed on the right
hand side of the line above the
data window.

Comments :

The DEX command assigns a data expression to any of
the four Soft-ICE/W data windows. Every time Soft-
ICE/W pops up, the expressions are re-evaluated and
the memory at that location is displayed in the
appropriate data window. This is useful for displaying
changing memory locations where there is always a
pointer to the memory in either a register or a variable.
The data is displayed in the current format of the data
window: either byte, word, dword, short real, long real
or 10-byte real. The effect of this command is as if you
were to reenter the command D expression every time
Soft-ICE/W pops up.

Chapter 5 Using Other Commands

Typing DEX with no parameters will display all the
expressions currently assigned to the data windows.

To unassign an expression from a data window, type
DEX followed by the data-window-number followed
by the Enter key.

To cycle through the four data windows, use the DATA
command. See the description of the DATA command
on page 183 for more details.

Example :

DEX 0 SS:ESP

This example would create a stack window in data
window 0. Every time Soft-ICE/W pops up, data
window 0 would contain the contents of the stack.

DEX 1 @PointerVariable

Every time Soft-ICE/W pops up, data window 1 would
contain the contents of the memory pointed at by the
public variable PointerVariable.

Chapter 5 Using Other Commands

CODE

XE "CODE command (Display instruction bytes)"§XE
"Display:instruction bytes"§XE "Instruction bytes,display"§
Display instruction bytes.

Syntax :

CODE [ON | OFF]

Comments :

The CODE command controls whether or not the
actual hexadecimal bytes of an instruction are displayed
when the instruction is unassembled. If CODE is ON,
the instruction bytes are displayed. If CODE is OFF,
the instruction bytes are not displayed.

Typing CODE with no parameters displays the current
state of CODE.

The default is CODE mode OFF.

Example :

CODE ON

This will cause the actual hexadecimal bytes of an
instruction to be displayed when the instruction is
unassembled.

Chapter 5 Using Other Commands

COLOR

XE "COLOR command (Display or set the screen
colors)"§XE "Display:screen colors"§XE "Set:screen
colors"§XE "Screen:display colors"§XE "Screen:set
colors"§XE "Colors,display or set screen"§
Display or set the screen colors.

Syntax :

COLOR [normal bold reverse help line]

normal This is the
foreground/background attribute
that is used to display normal
text. (default = 07H grey on
black)

bold This is the
foreground/background attribute
that is used to display bold text.
(default = 0FH white on black)

reverse This is the
foreground/background attribute
that is used to display reverse
video text. (default = 71H blue
on grey)

help This is the
foreground/background attribute

Chapter 5 Using Other Commands

that is used to display the help
line underneath the command
window. (default = 30H black
on cyan)

line This is the
foreground/background attribute
that is used to display the
horizontal lines between the
Soft-ICE/W windows. (default =
02H green on black)

Comments :

The COLOR command is used to customize the Soft-
ICE/W screen colors on a color monitor. Each of the
five specified colors is a hexadecimal byte where the
foreground color is in bits 0-3 and the background
color is in bits 4-6. This is identical to the standard
CGA attribute format where there are 16 foreground
colors and 8 background colors.

The actual colors represented by the 16 possible codes
are given below:

0 black
1 blue
2 green
3 cyan
4 red
5 magenta
6 brown

Chapter 5 Using Other Commands

7 grey
8 dark grey
9 light blue
A light green
B light cyan
C light red
D light magenta
E yellow
F white

Example :

COLOR 7 F 71 30 2

This command will cause the following color
assignments:

normal text grey on black
bold text white on black
reverse video text blue on grey
help line black on cyan
horizontal line green on black

Chapter 5 Using Other Commands

TABS

XE "TABS command (Display or set the tab settings for
source display)"§XE "Display:tab settings for source
display"§XE "Set:tab settings for source display"§XE "Tab
settings,display or set"§
Display or set the tab settings for source display.

Syntax :

TABS [tab-setting]

tab-setting This can be a number from 1
through 8 that specifies how
many columns between tab stops.

Comments :

The TABS command is used to display or set tab-settings for
the display of source files. Tab
stops can be anywhere from 1 to
8 columns. The default TABS
setting is 8. TABS with no
parameters will display the
current tab-setting. Specifying a
tab-setting of 1 will allow the
most source to be viewed since
each tab will be replaced by a
single space.

Example :

Chapter 5 Using Other Commands

TABS 4

This will cause the tabs setting to be changed to every
fourth column starting at the first display column.

Chapter 5 Using Other Commands

SERIAL

XE "SERIAL command (Redirect console to serial
terminal)"§XE "Redirect console to serial terminal"§XE
"Second:computer"§XE "Serial terminal"§XE "SERIAL.EXE
program(Sets up second PC)"§
Redirect console to serial terminal.

Syntax :

SERIAL [ON [com-port] [baud-rate] | OFF]

com-port This is a number from 1 to 4 that
corresponds to COM1, COM2,
COM3 or COM4. The default is
COM1.

baud-rate This is the baud-rate to
use for serial
communications. The
default is to have Soft-
ICE/W automatically
determine the fastest
possible baud-rate that
can be used. The
allowable rates are listed
below:

1200, 2400, 4800, 9600
19200, 23040, 28800, 38400
57000, 115000.

Chapter 5 Using Other Commands

Comments :

Debugging on a serial console requires a second IBM
compatible PC running MSDOS.
Any PC will do, including 8088,
8086 or 80286 machines. You
must first attach the computer to
your Windows computer with a
null modem cable attached to the
two serial ports. Before using
the SERIAL command, you
must run the SERIAL.EXE
program on the second PC. The
syntax of SERIAL.EXE is as
follows:

SERIAL ON com-port baud-rate

SERIAL.EXE has two optional parameters. The first
parameter is used to specify which com-port on the
second PC to use. The allowable com-ports are the
same as those listed above. The second parameter is
used to specify a baud-rate. The allowable baud-rates
are the same as those listed above. For example, to use
COM2 at 19200 baud you would specify:

SERIAL ON 2 19200

If no com-port is specified, SERIAL.EXE will use COM1. If
no baud-rate is specified, Soft-ICE/W will attempt to
determine the fastest possible baud-rate that can be
used. If a baud-rate is specified for SERIAL.EXE, the
same baud-rate must also be specified in the SERIAL

Chapter 5 Using Other Commands

command.

Prior to using the SERIAL command you must also
place the COMn keyword on a separate line in the
WINICE.DAT file to reserve a specific COM port for
the serial connection. "n" is a number between 1 and 4
representing the COM port. If this statement is not
present in WINICE.DAT, then you must pop Soft-
ICE/W up from the keyboard on the Soft-ICE/W
machine, not the second PC.

The SERIAL.EXE program allows Soft-ICE/W to use
the same user interface on a serial machine that it uses
on the Windows monitor. Once the serial connection is
established, using Soft-ICE/W is identical to debugging
on the local machine.

If baud-rate is not specified, Soft-ICE/W will automatically
figure out the highest possible rate. It does this by
starting at the lowest rate and incrementing that rate
until characters begin to be lost. At this point Soft-
ICE/W will use the next lowest baud-rate. This
process takes a few seconds to establish a connection.
During the process, the SERIAL.EXE program displays
the baud-rate it is trying to use. Once the highest
baud-rate is established, you can switch to specifying
this rate in the SERIAL command and on the
SERIAL.EXE command line. This will result in an
immediate connection.

Once a connection is made between the two computers,
the Windows screen will be restored and the serial
terminal will always contain the Soft-ICE/W display.

Chapter 5 Using Other Commands

Ctrl D is always the hot key sequence from the serial
terminal keyboard. You can also pop up Soft-ICE/W
from the main system keyboard with the standard hot
key sequence.

If the computer you are using as the serial terminal has a
monochrome display, you will probably want to use the
color command to adjust the attributes. Entering
COLOR 07 0F 70 70 07 is recommended.

If the serial monitor starts losing characters and the display
becomes corrupted, pressing Shift \ (backslash) at any
time will completely repaint the screen.

When finished debugging on the serial machine,
SERIAL.EXE is terminated by pressing Ctrl Z.

Specifying OFF after the SERIAL command will switch back
to debugging on the local display. SERIAL with no
parameters will display the current serial state plus the
com-port and baud-rate being used if SERIAL is ON.

Note
If you place the SERIAL
command in the INIT statement
of the WINICE.DAT
initialization file, then
SERIAL.EXE must be running
on the serial terminal prior to
running Soft-ICE/W.

Examples :

Chapter 5 Using Other Commands

SERIAL ON 19200 (on the second PC)

SERIAL ON 2 19200 (on the Soft-ICE/W machine)

This will cause Soft-ICE/W to switch its display to a
serial terminal on COM2 at a baud-rate of 19200. The
second machine will use COM1 at a baud-rate of
19200.

SERIAL ON 2 (on the second PC)

SERIAL ON (on the Soft-ICE/W machine)

This will cause Soft-ICE/W to switch its display to a
serial terminal on COM1. Soft-ICE/W will
automatically calculate the highest baud-rate that can
be used. The secondary PC will use COM2.

Chapter 5 Using Other Commands

LINES

XE "LINES command (Change number of lines of Soft-
ICE/W display)"§XE "Lines of display,change"§XE
"Change:lines of display"§XE "Soft-ICE/W:change number of
lines of display"§XE "Change:display size"§XE "25-line
mode"§XE "43-line mode"§XE "50-line mode"§
Change number of lines of the Soft-ICE/W display.

Syntax :

LINES [25 | 43 | 50]

Comments :

The LINES command changes Soft-ICE/W's character
display mode. It allows three different display modes:
25-line, 43-line or 50-line mode. 43-line mode is only
valid on VGA and EGA display adapters, and 50-line
mode is only valid on VGA display adapters.

Typing LINES with no parameters displays the current
state of LINES.

The default is number of display lines is 25. If your
Soft-ICE/W display is on another computer connected
by a serial cable, the display is fixed at 25 lines.

Chapter 5 Using Other Commands

Note
If you enter the SERIAL
command or the ALTSCR
command, Soft-ICE/W changes
to 25-line mode automatically.
If you change back to your EGA
or VGA display and want a
larger line mode, you must enter
the LINES command again.

Example :

LINES 43

This will change the Soft-ICE/W display to 43-line
mode if you have an EGA or VGA display.

Chapter 5 Using Other Commands

Print-Screen

XE "Print-Screen command (Print the contents of the
screen.)"§XE "Print:contents of the screen"§XE
"Screen:dump"§
Print contents of screen.

Syntax :

Print-Screen

Comments :

Depressing the Print-Screen key does a screen dump
to your printer. All information from the Soft-ICE/W
screen is sent to the printer. The default printer port is
LPT1, however this can be changed with the PRN
command.

If you don't wish to dump to a printer, an alternative to
Print-Screen is using the WLOG utility. WLOG can
be run from Windows or from a DOS VM and writes
the Soft-ICE/W command line window history to a file.

Note
Since Soft-ICE/W accesses the
hardware directly for all of its
I/O, Print-Screen works only on
printers connected directly to a
COM or LPT port. It does not
work on network printers.

Also see the PRN command.

Chapter 5 Using Other Commands

PRN

XE "PRN command (Set printer output port)"§XE "Set:printer
output port"§XE "Print:set output port"§
Set printer output port.

Syntax :

PRN [LPTx | COMx]

x A decimal number between 1 and
4 for COM or a decimal number
between 1 and 2 for LPT.

Comments :

The PRN command allows you to send output from
Print-Screen to a different printer port.

If no parameters are supplied, PRN displays the
currently assigned printer port.

Example :

PRN COM1

This command causes Print-Screen output to go to the
COM1 port.

Chapter 5 Using Other Commands

5.9 Screen Control Commands

XE "Screen:control commands" \r "SCTScrnCtrlC"§XE
"Commands:screen control"\r "SCTScrnCtrlC"§Commands:

FLASH Restore screen during P and T
RS Restore the program screen
CLS Clear the command window
ALTSCR Change to an alternate screen

Chapter 5 Using Other Commands

FLASH

XE "FLASH command (Restore Windows screen during P
and T)"§XE "Restore:Windows screen during P and T"§XE
"Windows:restore screen during P and T"§
Restore the Windows screen during P and T commands.

Syntax :

FLASH [ON | OFF]

Comments :

The FLASH command lets you specify whether the
Windows screen will be restored during any T (trace)
and P (program step) commands. If you specify that
the Windows screen is to be restored, it is restored for
the brief time period that the P or T command is
executing. This feature is needed to debug sections of
code that access video memory directly.

If the P command executes across a call, the screen will
be restored, because the routine being called may write
to the Windows screen. When debugging protected
mode applications such as VxD's or Windows
applications, this is not true. Soft-ICE/W will restore
the screen only if the display driver is called before the
call is completed.

If no parameter is specified, the current state of
FLASH is displayed.

Chapter 5 Using Other Commands

The default is FLASH mode OFF.

Example :

FLASH ON

This command turns on FLASH mode. The Windows
screen will be restored during any subsequent P or T
commands.

Chapter 5 Using Other Commands

RS

XE "RS command (Restore program screen)"§XE
"Restore:program screen"§XE "Program screen,restore"§
Restore the program screen.

Syntax :

RS

Comments :

The RS command allows you to restore the program
screen temporarily.

This feature is useful when debugging programs that
update the screen frequently. When the RS command
is used, the program screen is redisplayed. When a key
is pressed, the Soft-ICE/W screen is redisplayed.

Default Function Key : F4

Chapter 5 Using Other Commands

CLS

XE "CLS command (Clear the command window)"§XE
"Clear:command window"§XE "Command window:clear"§XE
"Clear:display window"§XE "Display window,clear"§
Clear the command window.

Syntax :

CLS

Comments :

The CLS command clears the Soft-ICE/W command
window and all display history and moves the prompt
and the cursor to the upper left-hand corner of the
command window.

Default Function Key : Alt F5

Chapter 5 Using Other Commands

ALTSCR

XE "ALTSCR command (Change to an alternate screen)"§XE
"Change:to alternate screen"§XE "Second:monitor"§XE
"Alternate:monitor"§XE "Alternate:screen"§XE "Two
monitors"§XE "Screen:redirect output"§
Change to an alternate screen.

Syntax :

ALTSCR [ON | OFF]

Comments :

The ALTSCR command allows you to redirect the
Soft-ICE/W output from your default screen to the
alternate monochrome monitor. This feature is useful,
for instance, when you want to debug a program with
heavy screen output.

ALTSCR requires the system to have two monitors
attached. The alternate monitor should be a
monochrome monitor in a character mode, which is the
default mode for monitors.

The default is ALTSCR mode OFF.

Chapter 5 Using Other Commands

Hint
If you want to change your Soft-
ICE/W display screen every time
you run Soft-ICE/W then you
should place the ALTSCR
command in the INIT statement
of the WINICE.DAT
initialization file.

Example :

ALTSCR ON

This command redirects screen output to the alternate
monitor.

Chapter 5 Using Other Commands

5.10 Back Trace History Commands

XE "Back trace history:commands" \r "SCTBackTraceC"§XE
"Commands:back trace history"\r
"SCTBackTraceC"§Commands:

TRACE Enter or exit trace simulation
mode

SHOW Display from back trace history
buffer

XT Single step in trace simulation
mode

XP Program step in trace simulation
mode

XG Go to address in trace simulation
mode

XRSET Reset the back trace history
buffer

Chapter 5 Using Other Commands

TRACE

XE "TRACE command (Enter or exit trace simulation
mode)"§XE "Enter:trace simulation mode"§XE "Exit:trace
simulation mode"§XE "Trace simulation mode:enter"§XE
"Trace simulation mode:exit"§
Enter or exit trace simulation mode.

Syntax :

TRACE [B | OFF | start]

start A hexadecimal number
specifying the index within the
back trace history buffer to start
tracing from. An index of 1
corresponds to the newest
instruction in the buffer.

Comments :

The TRACE command is used to enter, exit and
display the current state of trace simulation mode.
TRACE with no parameters displays the current state
of trace simulation mode. TRACE followed by OFF
exits from trace simulation mode and returns to regular
debugging mode. TRACE B enters trace simulation
mode starting from the oldest instruction in the back
trace history buffer. TRACE followed by a start
number enters trace simulation mode at the specified
index within the back trace history buffer.

Chapter 5 Using Other Commands

Trace simulation mode can only be used if there are
instructions in the back trace history buffer. The back
trace history buffer must first be filled by specifying a
range break point (BPR) with either the T or TW
parameters.

When trace simulation mode is active, the help line on
the bottom of the screen will show this, as well as the
index of the current instruction within the back trace
history buffer.

Once in trace simulation mode, the instructions in the
back trace history buffer can be stepped through using
the XT, XP and XG commands. When stepping
through the back trace history buffer, the only register
that will change is the EIP register since back trace
ranges do NOT record the contents of all the registers.
All Soft-ICE/W commands can be used in trace
simulation mode except the following: X, T, G, P,
HERE, and XRSET.

Example :

TRACE 8

This command will enter trace simulation mode starting
at the eighth instruction in the back trace history buffer.

TRACE OFF Default Function Key : Ctrl F9

TRACE B Default Function Key : Ctrl F12

Chapter 5 Using Other Commands

SHOW

XE "SHOW command (Display instructions from back trace
history buffer)"§XE "Display:instructions from back trace
history buffer"§XE "Display:back trace history buffer
instructions"§XE "Back trace history buffer:display
instructions from"§
Display instructions from the back trace history buffer.

Syntax :

SHOW [B | start] [L length]

start A hexadecimal number
specifying the index within the
back trace history buffer to start
disassembling from. An index of
1 corresponds to the newest
instruction in the buffer.

length The number of instructions to
display.

Comments :

The SHOW command is used to display instructions
from the back trace history buffer. If source is
available for the instructions then the display is in
mixed mode, otherwise only code is displayed.

All instructions and source are displayed in the
command window. Each instruction is preceded by its

Chapter 5 Using Other Commands

index within the back trace history buffer. The
instruction whose index is 1 is the newest instruction in
the buffer. Once SHOW has been entered, the contents
of the back trace history buffer can be scrolled forward
and backwards using the up and down arrow keys. The
Esc key must be pressed to exit from SHOW.

SHOW with no parameters or SHOW B will begin
displaying from the back trace history buffer starting
with the oldest instruction in the buffer. SHOW
followed by a start number begins displaying
instructions starting at the specified index within the
back trace history buffer.

SHOW can only be used if there are instructions in the
back trace history buffer. The back trace history buffer
must first be filled by specifying a range break point
(BPR) with either the T or TW parameters.

Example :

SHOW B

This command will start displaying instructions in the
command window, starting at the oldest instruction in
the back trace history buffer.

SHOW B Default Function Key : Ctrl F11

Chapter 5 Using Other Commands

XT

XE "XT command (Single step in trace simulation mode)"§XE
"Single step:in trace simulation mode"§XE "Trace simulation
mode:single step in"§XE "Back trace history buffer:single step
in"§
Single step in trace simulation mode.

Syntax :

XT [R]

Comments :

The XT command is used to single step the current
instruction in the back trace history buffer. It can only
be used in trace simulation mode. This command will
step to the next instruction contained in the back trace
history buffer. XT R single steps backwards within
the back trace history buffer.

Example :

XT

This command single steps one instruction forward in
the back trace history buffer.

XT Default Function Key : Ctrl F8

XT R Default Function Key : Alt F8

Chapter 5 Using Other Commands

XP

XE "XP command (Program step in trace simulation
mode)"§XE "Program step in trace simulation mode"§XE
"Trace simulation mode:program step in"§XE "Back trace
history buffer:program step in"§
Program step in trace simulation mode.

Syntax :

XP

Comments :

The XP command does a program step of the current
instruction in the back trace history buffer. It can only
be used in trace simulation mode. This command can
be used to skip over calls to procedures and rep string
instructions.

Example :

XP

This command does a program step over the current
instruction in the back trace history buffer.

Default Function Key : Ctrl F10

Chapter 5 Using Other Commands

XG

XE "XG command (Go to an address in trace simulation
mode)"§XE "Go to:address in trace simulation mode"§XE
"Trace simulation mode:go to an address in"§XE "Back trace
history buffer:go to an address in"§
Go to an address in trace simulation mode.

Syntax :

XG [R] address

Comments :

XG does a go to a specific code address within the
back trace history buffer. It can only be used in trace
simulation mode. The R parameter makes XG go
backwards within the back trace history buffer. If the
specified address is not found within the back trace
history buffer, an error will be displayed.

Example :

XG 2ff000

This command will make the instruction at address
CS:2ff000 the current instruction in the back trace
history buffer.

Chapter 5 Using Other Commands

XRSET

XE "XRSET command (Reset the back trace history
buffer)"§XE "Reset back trace history buffer"§XE "Back trace
history buffer:reset"§
Reset the back trace history buffer.

Syntax :

XRSET

Comments :

XRSET clears all information from the back trace
history buffer. It can only be used when NOT in trace
simulation mode.

Example :

XRSET

This will clear the back trace history buffer.

Chapter 5 Using Other Commands

5.11 Symbol and Source Line Commands

XE "Symbol and source line commands" \r
"SCTSymSourceC"§XE "Commands:symbol and source line"\
r "SCTSymSourceC"§Commands:

TABLE Change or display current
symbol table

EXP Display export symbols
SYM Display or set symbol
SYMLOC Relocate the symbol base
SRC Toggle between source, mixed

and code
FILE Change or display current source

file
SS Search current source file for a

string

Chapter 5 Using Other Commands

TABLE

XE "TABLE command (Change or display the current symbol
table)"§XE "Change:current symbol table"§XE "Current
symbol table,change or display"§XE "Display:current symbol
table"§XE "Symbol table,display current"§
Change or display the current symbol table.

Syntax :

TABLE [[R] partial-table-name] | AUTOON |
AUTOOFF | $

partial-table-name A symbol table name or enough
of the first few characters to
define a unique name.

AUTOON Key word that turns auto
table switching on.

AUTOOFF Key word that turns auto
table switching off.

$ When '$' is specified, the current
table becomes the table where
the current instruction pointer is.

Comments :

If no parameters are specified, then all of the currently
loaded symbol tables are displayed with the current

Chapter 5 Using Other Commands

symbol table highlighted. If partial-table-name is
specified, the specified table becomes the current
symbol table. You do not have to specify the entire
table name, but only enough characters to identify a
unique table. If the R parameter precedes partial-table-
name, the specified table is removed.

The TABLE command is used when you have multiple
symbol tables loaded. Soft-ICE/W supports symbol
tables for 16-bit Windows programs, 32-bit Windows
VxDs, DOS programs, loadable device drivers, and
T&SR's.

Note
Tables are not automatically
removed when your program
exits. If you re-load your
program with WLDR.EXE then
the symbol table corresponding
to the loaded program is replaced
with the new one.

Symbols are only accessible from one symbol table at
time. You must use the TABLE command to switch to
a symbol table before using symbols from that table.

If you use the AUTOON keyword, Soft-ICE/W will
switch to auto table switching mode. This will cause
the current table to become whichever table the
instruction pointer is in when Soft-ICE/W pops up.
AUTOOFF turns off this mode.

Chapter 5 Using Other Commands

Example :

TABLE

MYTSR.EXE
MYAPP.EXE
MYVXD
GENERIC

006412 bytes of symbol table memory available

Since no parameters were specified, all loaded symbol
tables are listed. GENERIC is highlighted, because it is
the current table. The amount of available symbol
table memory is displayed at the bottom.

Example :

TABLE myt

The current table is changed to MYTSR.EXE. Notice
that only enough characters to identify a unique table
were entered.

Chapter 5 Using Other Commands

EXP

XE "EXP command (Display export symbols)"§XE
"Display:export symbols"§XE "Export symbols,display"§XE
"Symbols:display export"§
Display export symbols from USER, GDI and KERNEL.

Syntax :

EXP [partial-name*]

partial-name An export symbol or the first few
characters of the name of an
export symbol followed by '*'. If
'*' is the last character of the
string then all the exports that
start with the specified characters
will be displayed.

Comments :

This command displays the export symbols from three
of the Windows internal DLLs: USER, GDI and
KERNEL. These exported symbols make up the bulk
of the Windows API. If no parameters are specified,
then all symbols from USER, GDI and KERNEL are
displayed.

Example :

EXP DELETE*

Chapter 5 Using Other Commands

This would display all exported symbols from GDI,
KERNEL and USER that start with "DELETE". A
sample output for this command follows:

KERNEL
010D:030E DELETEPATHNAME 00FD:412B

DELETEATOM
USER

05DD:0583 DELETEMENU
GDI

0465:0238 DELETELINEFONTS 043D:07AD
DELETEDC

050D:0FB7 DELETEJOB 043D:16D0
DELETEOBJECT

0505:0207 DELETEPQ 04C5:169E
DELETEMETAFILE

Chapter 5 Using Other Commands

SYM

XE "SYM command (Display or set symbol)"§XE
"Display:symbols"§XE "Set:symbol"§XE
"Symbols:display"§XE "Symbols:set"§
Display or set symbol.

Syntax :

SYM [[module-name] !] symbol-name [value]]

module-name A valid module name. This can
be a partial module name. This
allows displaying symbols in a
particular module. If module-
name is specified, it must be
followed by !

! If ! is the only parameter
specified, then the modules in
this symbol table will be listed.

symbol-name A valid symbol name. The
symbol-name can end with an *
(asterisk). This allows searching
if only the first part of the
symbol-name is known. The ,
(comma) character can be used
as a wild card character in place
of any character in the symbol-
name.

Chapter 5 Using Other Commands

value This is a word value that is used
if you want to set a symbol to a
specific value.

Comments :

The SYM command allows displaying and setting of
symbols. If SYM is entered with no parameters, all
symbols are displayed. The value of each symbol is
displayed next to the symbol-name.

If symbol-name is specified with no value, then the
symbol-name and its value are displayed. If the
symbol-name was not found then nothing is displayed.

If module-name! precedes symbol-name or *, then only
symbols from the specified module will be displayed.

The SYM command is often useful for finding a
symbol when you can only remember a portion of the
name. Two wild card methods are available for
locating symbols. If symbol-name ends with an *, then
all symbols that match the actual characters typed prior
to the * will be displayed, regardless of their ending
characters. If a , is used in place of a specific character
in symbol-name, that character is a wild card character.

If value is specified, all symbols that match symbol-
name are set to value. All symbols have word values.

Chapter 5 Using Other Commands

Note
If an address is placed between
square brackets as a parameter to
the SYM command, then the
closest symbol above and below
the address will be displayed.

Examples :

SYM FOO*

All symbols that start with FOO are displayed.

SYM FOO* 6000

All symbols that start with FOO are given the value
6000.

SYM !

All modules for the current symbol table are displayed.

SYM MAIN!FOO*

All symbols in module 'MAIN" that start with FOO are
displayed.

Chapter 5 Using Other Commands

SYMLOC

XE "SYMLOC command (Relocate the symbol base)"§XE
"Relocate symbol base"§XE "Symbol,relocate base"§
Relocate the symbol base.

Syntax :

SYMLOC [segment-address]

Comments :

The SYMLOC command adjusts the segment or
selector symbols in a Windows or a DOS program. In
a Windows program, SYMLOC converts all selectors
in the symbol table from ordinal numbers to the actual
selector values. SYMLOC is only necessary for a
Windows program if the symbol table was loaded by
the LOAD statement in the WINICE.DAT initialization
file. The SYMLOC command should only be done
once on a Windows program and is not reversible.

In a DOS program SYMLOC relocates the segment
components of all symbols relative to the specified
segment-address. This function is necessary when
debugging loadable device drivers or other programs
that can not be loaded directly with WLDR.EXE.

When relocating for a loadable device driver, use the
value of the base address of the driver as found in the
MAP command. When relocating for an .EXE
program, the value is 10H greater than that found as the

Chapter 5 Using Other Commands

base in the MAP command. When relocating for
a .COM program, use the base segment address that is
found in the MAP command.

The MAP command will display at least two entries for
each program. The first is typically the environment
and the second is typically the program. The base
address of the program is the relocation value.

Example :

SYMLOC 1244+10

This will relocate all segments in the symbol table
relative to 1244. The +10 is used to relocate a T&SR
that was originally a .EXE file. If it is a .COM file or a
DOS loadable device driver, the +10 is not necessary.

Chapter 5 Using Other Commands

SRC

XE "SRC command (Toggle between displaying source,
mixed and code)"§XE "Display:source code"§XE
"Display:mixed mode"§XE "Display:code"§XE
"Toggle:source, mixed, and code"§
Toggle between displaying source, mixed and code in the code
window.

Syntax :

SRC

Comments :

The SRC command toggles between source mode,
mixed mode and code mode in the code window.

Example :

SRC

This command changes the current mode of the code
window. If the mode was source, it becomes mixed. If
the mode was mixed, it becomes code. If the mode was
code, it becomes source.

Default Function Key : F3

Chapter 5 Using Other Commands

FILE

XE "FILE command (Change or display the current source
file)"§XE "Change:current source file"§XE "Display:current
source file"§XE "Display:code"§XE "Change:current source
file"§XE "Source file:change or display current"§XE
"Display:source file"§
Change or display the current source file.

Syntax :

FILE [[*]file-name]

Comments :

If file-name is specified, that file becomes the current
file and the start of the file is displayed in the code
window. If no file-name is specified, the name of the
current source file, if any, is displayed. If '*' is
specified, then all files in the current symbol table are
displayed.

The FILE command is often useful when setting a
break point on a line that has no associated symbol.
Use file to bring the desired file into the code window,
use the SS command to locate the specific line, move
the cursor to the specific line, then enter BPX or press
F9 to set the break point.

Chapter 5 Using Other Commands

Note
Only source files that have been
loaded into extended memory
with WLDR.EXE are available
with the FILE command.

Example :

FILE MAIN.C

If MAIN.C had been loaded with WLDR.EXE, this
command brings it up in the code window starting with
line 1.

Chapter 5 Using Other Commands

SS

XE "SS command (Search current source file for a string)"§XE
"Search:current source file"§XE "Source file:search current"§
Search the current source file for a string.

Syntax :

SS [line-number] ['string']

line-number A decimal number.

string A character string surrounded by
quotes.

Comments :

The SS command searches the current source file for
the specified character string. If there is a match, the
line that contained the string will be displayed as the
top line in the code window.

The search starts at the specified line-number. If no
line-number is specified, the search starts at the top line
displayed in the code window.

If no parameters are specified, the search continues for
the previously specified string.

The code window must be visible and in source mode
before using the SS command. To make the code
window visible, use the WC command. To make the

Chapter 5 Using Other Commands

code window display source, use the SRC command.

Example :

SS 1 'if (i==3)'

The current source file is searched starting at line 1 for
the string 'if (i==3)'. The line containing the next
occurrence of the string becomes the top line displayed
in the code window.

APPENDIX A

APPENDIX A

XE "Soft-ICE for DOS:with Soft-ICE/W" \r
"AppSIandSIW"§XE "Soft-ICE/W: with Soft-ICE" \r
"AppSIandSIW"§

Running Soft-ICE/W and Soft-ICE for DOS together.

Soft-ICE for DOS v 2.52 (or above) can co-exist with Soft-
ICE/W. Prior versions of Soft-ICE for DOS cannot reside in
memory with Soft-ICE/W. When Soft-ICE and Soft-ICE/W
are both resident in memory, they are two completely
independent debuggers. When you enter "WINICE" to enter
Soft-ICE/W and Windows, Soft-ICE for DOS becomes
dormant until you exit from Windows.

Soft-ICE 2.52 Features
XE "Soft-ICE for DOS:new features in 2.2"§
The following features have been added to Soft-ICE for DOS
in version 2.52:

• The ability to co-exist with Windows in enhanced mode.
When Windows is run in enhanced mode (with or without
Soft-ICE/W), Soft-ICE for DOS becomes dormant until
Windows exits.

• T&SRs and DOS loadable device drivers that are loaded
high, with the Soft-ICE for DOS built-in memory
manager, continue to be loaded high in Windows.

• A separate driver called UMB.SYS is provided that allows
using MS-DOS version 5 load high commands in place of

APPENDIX A

the Soft-ICE load high utilities.

Benefits of using Soft-ICE for DOS and Soft-ICE/W
together.

When using both debuggers, you can have the Soft-ICE pop-up
debugging capability any time in your system whether you are
in or out of Windows.

You can debug entirely through complex DOS/Windows based
system architectures that include both DOS and Windows
components. This includes DOS loadable device drivers and
T&SR's that come in prior to Windows but remain active all of
the time. You can also debug Windows before it enters
protected mode, including the real mode portions of your
VxDs.

Requirements
XE "Soft-ICE for DOS:requirements"§
• Soft-ICE for DOS must be installed in your CONFIG.SYS

prior to HIMEM.SYS.

• Your memory requirement is the total memory required
for Soft-ICE for DOS plus the total memory required for
Soft-ICE/W.

• The symbol table and back trace memory are independent
for each debugger. Therefore, if you are debugging a
T&SR at source level that you must debug both prior to
Windows and in Windows, you must have the symbols
and source loaded separately for both debuggers.

• The user interfaces for the products are slightly different.
For the most part Soft-ICE/W is a superset of Soft-ICE for
DOS, though there are some features that Soft-ICE/W
does not support, including small window mode and
debugging overlaid programs.

APPENDIX B

APPENDIX B

XE "Soft-ICE/W:with Windows debugging kernels" \r
"AppWindDebugKernel"§

Using Soft-ICE/W with the Windows Debugging
Kernels

Two separate debugging kernels are available from Microsoft:
the standard debugging kernel and the VxD debugging version
of WIN386.EXE. These debugging kernels provide additional
error checking and diagnostic message generation.

If you are using one of these debugging kernels, Soft-ICE/W
recognizes they are loaded and provides two additional
capabilities: 1) the re-direction of diagnostic messages and 2)
the ability to process "." commands.

When either of the debugging kernels are loaded, most
diagnostic messages that normally go out to a serial port are re-
directed to the Soft-ICE/W command window.

In addition, the "." commands in the VxD debugging version
of WIN386.EXE can be entered from the Soft-ICE/W
command line. Simply enter the command preceded by a ".",
and the command will function like other Soft-ICE/W
commands. Entering ".?" will give a list of the commands
available in the VMM VxD. Also, if you are writing your own
VxD you can use the debugging calls to use this interface.

APPENDIX B

Warning
If you are using the VxD
debugging version of
WIN386.EXE, you must use
the /K switch on the WINICE
command line or the
KBD=TRUE statement in
WINICE.DAT initialization file.
This is a special switch required
for the VxD debugging version
of WIN386.EXE. It enables an
alternate keystroke handler
within Soft-ICE/W. If you do
not use this switch then Windows
will hang after popping up Soft-
ICE/W a few times.

APPENDIX C

APPENDIX C

TROUBLESHOOTING GUIDE

This appendix gives solutions to some possible problems that
you could encounter when using Soft-ICE/W. If you do not
find the problem here, check the README.SIW file on your
distribution diskette for any troubleshooting hints that may not
have made it into this manual.

Time does not show the correct time at the end of the day.

Soft-ICE/W does not let any interrupts go through to
the system when the Soft-ICE/W screen is up. This
does not affect the real time clock at all, so the next
time you reboot, the time will be displayed correctly
again. You can also correct the time by running the
program UPTIME.EXE. This gets the time from the
real time clock and calls DOS to set the time.

Soft-ICE/W does not display properly on your monitor.

Soft-ICE/W does not use the ROM BIOS or Windows
drivers for its output, so it must go directly to the
hardware. Soft-ICE/W was designed to work with
100% compatible VGA displays. Soft-ICE/W can also
work with many CGA, EGA and super-VGA displays
if you run the VIDMODE utility first. If you have a
VGA or super-VGA display that Soft-ICE/W does not

APPENDIX C

work properly on after running VIDMODE, try re-
configuring Windows to use standard VGA mode.

If you have a display adapter that Soft-ICE/W is not
compatible with, then you must use a secondary
monochrome monitor or a second computer linked with
a serial cable as your debugging screen. For
information on a secondary monitor refer to the
ALTSCR command on page Error: Reference source
not found, and for a serial terminal refer to the
SERIAL command on page Error: Reference source
not found.

If the SERIAL display gets corrupted or characters are
missing.

Use shift backslash (\) to repaint the screen. If the
problem persists, try running at a slower baud rate.

Soft-ICE/W will not pop up from the SERIAL display.

The hot key sequence is always CTRL D from the
serial display. If this does not work try placing the
COMn statement in WINICE.DAT. Refer to the
SERIAL command on page Error: Reference source
not found for more information.

The key sequence used to bring up Soft-ICE/W conflicts
with an existing program that you are running.

You can set a different key sequence to bring up Soft-
ICE/W by using the ALTKEY command. Refer to the
ALTKEY command on page Error: Reference source

APPENDIX C

not found.

You just exited from Soft-ICE/W back to Windows and the
keyboard appears to be hung or behaves oddly.

Occasionally the Ctrl or Alt keys will be logically stuck
in the down position after you return from Soft-ICE/W.
This is due to timing issues related with Soft-ICE/W's
key stroke handler. If this occurs, press and release all
Alt keys and all Ctrl keys. This will reset the logical
states of these keys to the up position.

Your program does not accept keystrokes, but the
keyboard is still active.

A shift state key may be logically stuck down. Try
pressing and releasing each Shift, Ctl and Alt key.

Soft-ICE/W hangs when it is popped up.

Some computers have keyboards that cause Soft-
ICE/W to hang when it pops up. Placing the NOLEDS
keyword in WINICE.DAT will eliminate this problem,
but has the side effect of disabling the keyboard LED
indicators from toggling while in Soft-ICE/W.

You were unassembling instructions, or editing or
displaying memory in a software debugger that you were
using as an assistant to Soft-ICE/W, when your debugger
crashed.

You accessed an address that triggered a Soft-ICE/W
break point, and ACTION was not set to HERE or the

APPENDIX C

debugger module-name. When Soft-ICE/W brings you
to the point where you want to look around in memory
with your debugger, you should disable the Soft-
ICE/W break points. If you don't, you could set off a
break point unintentionally. This would cause your
debugger to trigger itself, which can be a fatal problem
with debuggers that cannot be re-entered. If you use
the ACTION command with the module-name of the
debugger specified, Soft-ICE/W will watch and prevent
this situation.

After you exited from a software debugger that you were
using as an assistant to Soft-ICE/W, the system crashed.

This problem could have many causes, but one possible
cause is that you may have forgotten to disable the
Soft-ICE/W break points, and ACTION is still set to
trigger your debugger. When the break point occurs,
ACTION will attempt to trigger your debugger, but
your debugger is no longer loaded.

When Windows appears to be hung, Soft-ICE/W will not
come up.

Situations can occur where Soft-ICE/W is unable to
pop up. This is most likely to occur because of bugs in
VxD's (VxD's run at protection level 0). Specific
reasons include:

• Interrupts disabled in a VxD.
• The keyboard has been accidently disabled

by sending illegal commands to the keyboard
controller.

APPENDIX C

• Key portions of the Soft-ICE/W debugger
have been corrupted by an errant VxD.

You want to debug a program in Windows standard mode
with Soft-ICE/W.

Soft-ICE/W is not compatible with Windows standard
mode. Windows must be in enhanced mode to run
Soft-ICE/W.

The MAP, S, F, C or M commands do not complete
properly.

Each of these commands accesses a range of memory.
Occasionally you may do one of these commands when
Windows has mapped out one or more pages within
this range. The S command will skip over these pages
without searching within them. The MAP, F, C and M
commands will terminate at the point they reached the
mapped-out page with an error message.

The system hangs or is corrupted after program stepping
over a CALL instruction in Windows assembly language
code.

This can occur from trying to step over a Windows
thunk. A thunk is a call to an intermediate routine that
sets up the stack frame and does other bookkeeping
chores required for both real and protected mode
operation. The call to the thunk is followed by data
bytes. When you attempt to program step over the
thunk, the data byte following the call instruction is
replaced with an INT 3. This can cause the thunk to

APPENDIX C

corrupt the stack.

If you attempt to step over a thunk, you will not return
to Soft-ICE/W, because the INT 3 is never executed.

You can not pop up Soft-ICE/W from a remote machine
attached through a serial connection.

You must place the COMn keyword on a separate line in
the WINICE.DAT file to reserve a specific COM port
for the serial connection. "n" is a number between 1 and
4 representing the COM port. If this statement is not
present in WINICE.DAT, then you must pop Soft-
ICE/W up from the keyboard on the Soft-ICE/W
machine, not the second PC.

You pop up Soft-ICE/W or step through assembly code
and you encounter a segment filled with HLT instructions,
INT 30HS or an ARPL instruction.

Windows uses INT 30HS, HLT instructions and ARPL
instructions to make protected mode level transitions.
This is normal Windows operation.

You run out of SYM memory while loading a symbol table
with many source files.

If your program has too many source files to fit into
symbol memory, you can instruct WLDR to selectively
load source files with a .SRC file; see page 63 for
more information.

APPENDIX D

APPENDIX D

XE "Error messages" \r "AppErrorMsg"§

ERROR MESSAGES

Address Not Found
Either the XG command specified an address that was not
found in the back trace history buffer, or the XT or XP reached
the end of the back trace history buffer.

All Break Registers Used, Use In RAM Only
You were trying to set a BPX break point in ROM and all the
debug registers were already used. BPX will still work in
RAM since it uses the INT 3 method.

Attach to serial device has FAILED
You typed in the SERIAL command, and a timeout happened
before the connection to the remote PC could complete

Backtrace Buffer Is Empty
You attempted to use a SHOW or TRACE command with an
empty back trace history buffer. You must first use the BPR
command with either the T or the TW parameter to fill the
back trace history buffer.

BadSelector
You specified an invalid LDT selector in aHEAP or LHEAP
command.

BPM Break Point Limit Exceeded

APPENDIX D

Only four BPM-style break points are allowed, due to
restrictions of the 386/486 processor.

BPMD Address Must Be On DWord Boundary
The address specified in BPMD did not start on a word
boundary.
A dword boundary must have the two least significant bits of
the address equal 0.

BPMW Address Must Be On Word Boundary
The address specified in BPMW did not start on a word
boundary. A word boundary must have the least significant bit
of the address equal 0.

The following messages are displayed as reasons for Soft-
ICE/W popping up:
Break Due to Debug Keyboard Request
Break Due to Embedded INT 1
Break Due to Embedded INT 3
Break Due to G
Break Due to General Protection Fault (0Dh). Fault=dddd
Break Due to HERE
Break Due to Hot Key
Break Due to Invalid Opcode Fault (06h)
Break Due to LDR
Break Due to Page Fault (0Eh). Fault=dddd
Break Due to Stack Fault (0Ch). Fault=dddd

Break Points Not Allowed Within Soft-ICE/W
You cannot set break points over Soft-ICE/W code.

Cannot Interrupt To A Less Privileged Level
You cannot GENINT from a level to a higher level. This is a

APPENDIX D

restriction of the 386/486 processor.

The following messages are given when attempting to set a
BPR over an invalid range.
Cannot Use Range: Overlaps GDT
Cannot Use Range: Overlaps IDT
Cannot Use Range: Overlaps LDT
Cannot Use Range: Overlaps Page Table
Cannot Use Range: Overlaps Soft-ICE/W

Command Is Not Valid In 32 Bit Mode
The EXIT command is only valid in PROT16 or VM mode.

Count Too Large
The specified count on a break point command was larger than
0FFH.

Debug Register Is Already Being Used
The debug -reg specified in the BPM command was already
used in a previous BPM command.

Debugging Version Of WIN386 Is Not Loaded
A VxD "." command was used when the win386.exe debug
version was not loaded.

Divide By Zero Error
A division was entered in the command that resulted in a
divide by zero error.

Duplicate Break Point
The specified break point already exists.

Error Walking Global Heap

APPENDIX D

Windows has been corrupted so the global heap can no longer
be walked.

Error Walking Module List
Windows has been corrupted so the module list can no longer
be walked.

Error Walking Task List
Windows has been corrupted so the task list can no longer be
walked.

Illegal Bit Mask
The mask specified for the BPIO or BPM command was
invalid.

Illegal Count
An invalid count field was specified in a break point
command.

Int0D Fault in Soft-ICE/W at address XXXXX offset
XXXXX
Fault Code=XXXX
 or
Int0E Fault in Soft-ICE/W at address XXXXX offset
XXXXX
Fault Code=XXXX
These two messages are internal Soft-ICE/W errors. They
mean that code within Soft-ICE/W caused either a general
protection fault (0d) or a page fault (0e). The offset is the
offset within the code that caused the fault. Please write down
the information contained in the message and call us.

Invalid Address

APPENDIX D

The address specified in the current command was not valid.

Invalid Debug Register
A BPM debug-reg greater than 3 was specified. Valid debug
registers are DR0, DR1, DR2 and DR3.

Invalid Expression
The address specified in the current command was not valid.

Invalid Indirection
The @ operator was attempted for the current expression, but
the address pointed to by the indirection was not a valid
address.

Invalid Interrupt Number
A BPINT int-number larger than 5FH was specified. BPINT
works only for interrupts that are handled through the IDT.
Currently, the IDT contains only interrupts 0-5FH. Interrupts
above this are dispatched through general protection faults.

Invalid Range
An invalid address range was entered in the BPR command.
See "BPRW module-name | selector [verb]" on page 120 for
more information

Invalid Selector
The protected mode selector used was not valid. Use the LDT
and GDT commands to determine valid selectors.

Invalid TSS
The BPIO command was specified when there was not a valid
TSS in the system.

APPENDIX D

Invalid Window Handle
The window-handle specified in the BMSG command does not
exist or is an invalid number.

I/O Port Not Found In I/O Bitmap
The BPIO command specified an invalid I/O port number.

Module Has No Code Segments
The module-name specified in the CSIP command must
contain code segments. Use the HEAP module-name
command to see what types of segments the module contains.

Module Not Found
The HEAPcommand specified a module-name that was not
found. Use the MOD command to list the valid module
names.

Must Be In Trace Simulation Mode
The XT, XP and XG commands can only be used when in
trace simulation mode. You must first use the BPR command
with either the T or the TW parameter to fill the back trace
history buffer, then use the TRACE command to enter trace
simulation mode.

No Backtrace Memory Allocated
You attempted to use a BPR T or BPR TW command without
allocating back trace memory. You have changed the back
trace memory size to 0. You must first allocate back trace
memory by using the /TRA switch when loading Soft-ICE/W
or specifying the TRA statement in the
WINICE.DAT initialization file.

No Code At This Line Number

APPENDIX D

The line number specified in the command has no code
associated with it.

No Current Source File
You entered the SS command and there was no source file
currently on the screen.

No embedded Int 1 or Int 3
The ZAP command did not find an embedded interrupt 1 or
interrupt 3 in the code. The ZAP command will only work if
the INT 1 or INT 3 instruction is the one before the current
CS:EIP.

No files Found
The current symbol table does not have any source files loaded
for it.

No LDT
This message is displayed if you use certain Windows
information commands (HEAP, MOD, LHEAP, LDT, and
TASK) when there is no LDT. Refer to "LDT [selector]" on
page 190 for more information.

No Local Heap
The LHEAP command specified a selector that has no local
heap.

No More Break Points Available
A maximum of 32 break points are allowed in Soft-ICE/W.

No More Watch Variables Allowed
A maximum of 8 watch variables are allowed.

APPENDIX D

No Search In Progress
The S command was specified without parameters and no
search was in progress. You must have first specified S with
an address and a data-list for parameters. To search for
subsequent occurrences of the data-list , you can then use the S
command with no parameters.

NO_SIZE
During an A command, the assembler cannot determine
whether you wanted to use byte, word or double word.

No Symbol Table
This message occurs if you enter the SYM, SS or FILE
command and there are no symbols currently present.

No TSS
At the time the TSS command was entered, there was no valid
task state segment in the system.

Only Valid In Source Mode
The SS command cannot be used in mixed mode or code
mode.

Only Valid In VM Mode
The SYMLOC command is only valid while you are in VM
mode.

Page Not Present
The specified address was marked not present in the page
tables.
This means that when Soft-ICE/W was trying to access some
information, it accessed some memory that was in a page
marked not present.

APPENDIX D

Parameter Is Wrong Size
One of the parameters entered in the command was the wrong
size. For example, you would get this message if you use the
EB or BPMB commands with a word value instead of a byte
value.

Parameters Required
The specified command requires parameters. For a description
and a syntax example of the command, specify ? command in
the Soft-ICE/W command window.

Pattern Not Found
The S command did not find a match in its search for the data-
list.

Press 'C' to Continue, 'R' to Return to Soft-ICE
Soft-ICE/W popped up due to a fault (06, 0c, 0d, 0e). Press 'R'
to return control to Soft-ICE/W. Press 'C' to pass the fault on to
the Windows fault handler which will usually display the UAE
box and terminate the application. When you exit Soft-ICE/W
this message will reoccur because the fault has not been
handled.

Press 'Z' for Soft-ICE/W or pass back any other key
Soft-ICE/W popped up due to a Debug Keyboard Request.
Windows requested a key through in_debug_chr. An example
of this is FatalExit. Press 'Z' to return to Soft-ICE/W. Any
other key will be passed on to Windows to satisfy the keyboard
request. Normally there
will be a prompt in the command window, such as "Abort,
Break, or Ignore?" When you exit Soft-ICE/W this message
will reoccur because the key request has not been satisfied.

APPENDIX D

Range Too Large
BPR address ranges cannot be larger than 4 meg.

Segment Limit Exceeded
When using the F,E,C, or M commands in a protected mode
region, the selector limit has been exceeded. Use the LDT
command with the selector to find its limit.

Selectors Must Be The Same
The BPR start-address and end-address selectors must be the
same. If the range is over a protected mode region, then the
starting address and the ending address must use the same
selector as the segment portion of the address.

Soft-ICE/W Is NOT ACTIVE
This message is displayed on the help line on monochrome and
serial displays when Soft-ICE/W is no longer in control.

Specified Name Not Found
You typed TABLE with an invalid table-name. Type TABLE
with no parameters to see a list of valid table names.

Syntax Error
The specified command had a syntax error. For a description
and a syntax example of the command, specify ? command in
the Soft-ICE/W command window.

APPENDIX D

Type TRACE OFF To Exit Trace Simulation Mode
Commands that normally exit from Soft-ICE/W
(X,T,P,G,EXIT,GENINT) and the hot key sequence (default
is Ctrl D) do not work while in trace simulation mode. You
must exit trace simulation mode with the TRACE OFF
command before trying to exit Soft-ICE/W.

VxD Not Found
The VXD command specified a VxD-name that was not found.
Type the command VXD with no parameters to get a list of
valid VxD names.

APPENDIX E

APPENDIX E

XE "Commands:alphabetic list of" \r "AppAlphCmds"§XE
"Alphabetic command list" \r "AppAlphCmds"§

Alphabetical Command List

? Display help information 174
. Locate current instruction in code window 297
A Assemble code 282
ACTION Set action after break point is reached 268
ALTKEY Set alternate key sequence to invoke Soft-
ICE/W Error: Reference source not found
ALTSCR Change to an alternate screen

Error: Reference source not found
BC Clear break points 154
BD Disable break points 147
BE Enable break points 149
BH Break point history 155
BL List break points 150
BMSG Set break point on Windows message 132
BPE Edit break point 152
BPINT Set break point on interrupt 126
BPIO Set break point on I/O port access 123
BPM Set break point on memory access or execution

113
BPR Set break point on memory range 120
BPRW Set multiple ranges on Windows program or

code segment 120
BPT Use break point as a template 153
BPX Set/Clear break point on execution 129

APPENDIX E

C Compare two data blocks 281
CLASS Display information on Window classes. 239
CLS Clear the command window

Error: Reference source not found
CODE Display instruction bytes

Error: Reference source not found
COLOR Display/set screen colors

Error: Reference source not found
CR Display control registers 198
CSIP Set CS:EIP (instruction pointer) range qualifier

135
CWATCH Clear watch on expression 180
D Display memory 168
DATA Change data window 183
DEX Display/assign data window expression

Error: Reference source not found
E Edit memory 171
EC Enter/exit the code window 294
EXIT Force an exit of current program 262
EXP Display export symbols

Error: Reference source not found
F Fill memory with data 278
FILE Change or display current source file

Error: Reference source not found
FKEY Show and edit function key assignments

Error: Reference source not found
FLASH Restore screen during P and T

Error: Reference source not found
FORMAT Change data window format 182
G Go to an address 254
GDT Display Global Descriptor Table 187
GENINT Force an interrupt to occur 264
HBOOT Hard system boot (total reset) 266

APPENDIX E

HEAP Display Windows global heap 202
H Display help information 174
HERE Go to the current cursor line 260
HWND Display information on Window handles. 234
I Input from I/O port 249
I1HERE Pop up on embedded INT 1 instructions. 270
I3HERE Pop up on INT 3 instructions. 272
IDT Display Interrupt Descriptor Table 193
LDT Display Local Descriptor Table 190
LHEAP Display Windows local heap 207
LINES Change number of lines of Soft-ICE/W display

Error: Reference source not found
M Move data 280
MAP Display Virtual Machine memory map 231
MOD Display Windows module list 199
O Output to I/O port 250
P Program step 258
PAGE Display page table information 223
PAUSE Pause after each screen

Error: Reference source not found
PHYS Display all virtual addresses for a physical
address 229
Print-Screen Print contents of screen

Error: Reference source not found
PRN Set printer output port

Error: Reference source not found
R Display or change registers 162
RS Restore the program screen

Error: Reference source not found
S Search memory for data 276
SERIAL Redirect console to serial monitor

Error: Reference source not found
SHOW Display from back trace history buffer

APPENDIX E

Error: Reference source not found
SRC Toggle between source, mixed and code

Error: Reference source not found
SS Search current source file for a string

Error: Reference source not found
STACK Display a call stack 216
SYM Display or set symbol

Error: Reference source not found
SYMLOC Relocate the symbol base

Error: Reference source not found
T Trace one instruction 256
TABLE Change or display current symbol table

Error: Reference source not found
TABS Display/set tab settings

Error: Reference source not found
TASK Display Windows task list 239
TRACE Enter or exit trace simulation mode

Error: Reference source not found
TSS Display task state segment & I/O port hooks 195
U Unassemble instructions 165
VCALL Display VxD calls 219
VER Display Soft-ICE/W version number 176
VM Display information on virtual machines. 243
VXD Display Windows VxD map 210
WATCH Add watch expression 177
WC Toggle/set the size of the code window 287
WD Toggle/set the size of the data window 290
WMSG Display Windows messages 221
WR Toggle the register window 286
WW Toggle the watch window 293
X Exit from the Soft-ICE/W screen 253
XG Go to address in trace simulation mode

Error: Reference source not found

APPENDIX E

XP Program step in trace simulation mode
Error: Reference source not found

XRSET Reset the back trace history buffer
Error: Reference source not found

XT Single step in trace simulation mode
Error: Reference source not found

ZAP Replace embedded INT1 or INT3 with NOP 274

APPENDIX F

APPENDIX F

XE "Commands:functional list of" \r "AppFuncCmds"§XE
"Functional command list" \r "AppFuncCmds"§

Functional Command List

Setting Break Points:
BPM Set break point on memory access or execution

113
BPR Set break point on memory range 120
BPRW Set multiple ranges on Windows program or

code segment 120
BPIO Set break point on I/O port access 123
BPINT Set break point on interrupt 126
BPX Set/Clear break point on execution 129
BMSG Set break point on Windows message 132
CSIP Set CS:EIP (instruction pointer) range qualifier

135

Manipulating Break Points:
BD Disable break points 147
BE Enable break points 149
BL List break points 150
BPE Edit break point 152
BPT Use break point as a template 153
BC Clear break points 154
BH Break point history 155

Display and Edit Commands:
R Display or change registers 162

APPENDIX F

U Unassemble instructions 165
D Display memory 168
E Edit memory 171
? or H Display help information 174
VER Display Soft-ICE/W version number 176
WATCH Add watch expression 177
CWATCH Clear watch on expression 180
FORMAT Change data window format 182
DATA Change data window 183

Display System Information Commands:
GDT Display Global Descriptor Table 187
LDT Display Local Descriptor Table 190
IDT Display Interrupt Descriptor Table 193
TSS Display task state segment & I/O port hooks 195
CR Display control registers 198
MOD Display Windows module list 199
HEAP Display Windows global heap 202
LHEAP Display Windows local heap 207
VXD Display Windows VxD map 210
TASK Display Windows task list 239
STACK Display a call stack 216
VCALL Display VxD calls 219
WMSG Display Windows messages 221
PAGE Display page table information 223
PHYS Display all virtual addresses for a physical
address 229
MAP Display Virtual Machine memory map 231
HWND Display information on Window handles. 234
CLASS Display information on Window classes. 239
VM Display information on virtual machines. 243

I/O Port Commands:

APPENDIX F

I Input from I/O port 249
O Output to I/O port 250

Transfer Control Commands:
X Exit from the Soft-ICE/W screen 253
G Go to an address 254
T Trace one instruction 256
P Program step 258
HERE Go to the current cursor line 260
EXIT Force an exit of current program 262
GENINT Force an interrupt to occur 264
HBOOT Hard system boot (total reset) 266

Debug Mode Commands:
ACTION Set action after break point is reached 268
I1HERE Pop up on embedded INT 1 instructions. 270
I3HERE Pop up on INT 3 instructions. 272
ZAP Replace embedded INT1 or INT3 with NOP 274

Utility Commands:
S Search memory for data 276
F Fill memory with data 278
M Move data 280
C Compare two data blocks 281
A Assemble code 282

Windowing Commands:
WR Toggle the register window 286
WC Toggle/set the size of the code window 287
WD Toggle/set the size of the data window 290
WW Toggle the watch window 293
EC Enter/exit the code window 294
. Locate current instruction in code window 297

APPENDIX F

Debugger Customization Commands:
PAUSE Pause after each screen

Error: Reference source not found
ALTKEY Set alternate key sequence to invoke Soft-
ICE/W Error: Reference source not found
FKEY Show and edit function key assignments

Error: Reference source not found
DEX Display/assign data window expression

Error: Reference source not found
CODE Display instruction bytes

Error: Reference source not found
COLOR Display/set screen colors

Error: Reference source not found
TABS Display/set tab settings

Error: Reference source not found
SERIAL Redirect console to serial monitor

Error: Reference source not found
LINES Change number of lines of Soft-ICE/W display

Error: Reference source not found
Print-Screen Print contents of screen

Error: Reference source not found
PRN Set printer output port

Error: Reference source not found

Screen Control Commands:
FLASH Restore screen during P and T

Error: Reference source not found
RS Restore the program screen

Error: Reference source not found
CLS Clear the command window

Error: Reference source not found
ALTSCR Change to an alternate screen

APPENDIX F

Error: Reference source not found

Back Trace History Commands:
TRACE Enter or exit trace simulation mode

Error: Reference source not found
SHOW Display from back trace history buffer

Error: Reference source not found
XT Single step in trace simulation mode

Error: Reference source not found
XP Program step in trace simulation mode

Error: Reference source not found
XG Go to address in trace simulation mode

Error: Reference source not found
XRSET Reset the back trace history buffer

Error: Reference source not found

Symbol and Source Line Commands:
TABLE Change or display current symbol table

Error: Reference source not found
EXP Display export symbols

Error: Reference source not found
SYM Display or set symbol

Error: Reference source not found
SYMLOC Relocate the symbol base

Error: Reference source not found
SRC Toggle between source, mixed and code

Error: Reference source not found
FILE Change or display current source file

Error: Reference source not found
SS Search current source file for a string

Error: Reference source not found

INDEX

INDEX

!
µ
symbol, 40
& symbol, 40
* symbol, 39
. command (Locate current

instruction in code window),
222

. symbol, 39
; symbol, 37
? command (Display help

information), 131
@ symbol, 40
[] symbols, 42
^ symbol, 37
| symbol, 42
16-bit protected mode, 74
25-line mode, 241
32-bit protected mode, 75
43-line mode, 241
50-line mode, 241
8086 virtual address mode, 75
8514 monitor, 11

A

A (Auxiliary carry flag), 122
A command (Assemble

code), 211
Abort current program, 195

ACTION command (Set
action after break point is
reached), 199

Activate
break points, 112
other debuggers, 196,199

Address definition, 37
Address mode,default, 75
Addressing

modes, 74
special characters, 40

Allocate extra memory, 18
Alphabetic command list,

283-297
Alternate

key sequence, 17,46
monitor, 249
screen, 249

ALTKEY command (Set an
alternate key sequence to
invoke Soft-ICE/W), 225

ALTSCR command (Change
to an alternate screen), 249

Ampersand (&), 40
Applications,load for

debugging, 47-54
Assemble code, 211
Assembler, 211
Assign data window

expression, 230
Auxiliary carry flag, 122

INDEX

B

Back trace history
commands, 250-259
exploring, 57

Back trace history buffer
allocate extra memory

for, 7
display instructions from,

253
go to an address in, 257
program step in, 256
reset, 258
single step in, 255

Back trace ranges, 103-104
across code, 105-106
across data, 106-107
enable, 89

BC command (Clear one or
more break points), 116

BD command (Disable one or
more break points), 111

BE command (Enable one or
more break points), 112

BH command (List and let
you select previously set
break points), 117

BL command (List all break
points), 113

BPE command (Edit a break
point description), 114

BPINT command (Set a
break point on an interrupt),
94

BPIO command (Set a break
point on an I/O port access),
92

BPM,BPMB,BPMW,BPMD
commands (Set break point
on memory access or
execution), 84

BPMSG command (Set a
break point on one or more
Windows messages), 99

BPR command (Set a break
point on a memory range),
88

BPRW command (Set range
break points on Windows
program or code segment),
90

BPT command (Use a break
point description as a
template), 115

BPX command (Set or clear a
break point on execution),
97

Break number definition, 82
Break point history, 117
Break points

clear, 116
commands, 80-118
copy, 115
CSEIP memory range

INDEX

qualifier, 102
delete, 116
disable, 111
edit, 114
enable, 112
execution, 84,97
I/O port access, 92
interrupt, 94
introduction, 82
limit on number of, 82
list, 113
list previously set, 117
manipulate, 110-118
memory access, 84
memory range, 88
modify, 114
on code segment, 90
on Windows program, 90
point-and-shoot, 56,97
remove, 116
select previously set, 117
set, 83-103
set action after, 199
set in VxDs, 72
state, 113
sticky, 82
Windows messages, 99

C

C (Carry flag), 122
C command (Compare two

data blocks), 210

C program,debugging, 55
Carry flag, 122
CGA controller, 12
Change

code window size, 215
command window size,

33
current source file, 271
current symbol table, 260
data window, 139
data window format, 138
data window size, 217
display size, 241
hot key sequence, 46
lines of display, 241
memory, 129
register values, 122
to alternate screen, 249

CLASS command (Display
information on Windows
classes), 177

classes information display,
177

Clear
break points, 116
command window, 248
display window, 248
interrupt break point, 97
watch expression, 137

CLS command (Clear the
command window), 248

Code
assemble, 211

INDEX

display, 29-33
CODE command (Display

instruction bytes), 232
Code segment break point, 90
Code window, 29-33

enter or exit, 220
set size, 215
toggle, 215

COLOR command (Display
or set the screen colors), 233

Colors,display or set screen,
233

COM file,prepare to debug,
47

Command history, 34
Command line,edit, 33
Command window, 33-37

clear, 248
save contents, 35

Commands, 83-103,110-
118,273

alphabetic list of, 283-297
back trace history, 250-

259
break point, 83-103,110-

118
debug mode, 198-205
debugger customization,

223-245
display, 120-140
display system

information, 140-173
edit, 120-140

functional list of, 297-302
I/O port, 173-185
manipulate break points,

110-118
recall, 34
screen control, 245-250
set break points, 83-103
symbol and source line,

259-273
syntax, 37
transfer control, 185-198
utility, 205-213
windowing, 213-223

Compare data, 210
Compile switches, 47
Control registers display, 149
Copy a break point, 115
Count definition, 82
CR command (Display the

control registers), 149
CSEIP memory range

qualifier break point, 102
CSIP command (Set CSEIP

memory range qualifier for
all break points), 102

Ctrl D key sequence, 225
Current cursor line, go to,

193
Current instruction,locate,

222
Current symbol table,change

or display, 260

INDEX

Current Virtual Machine
addresses, 78

CWATCH command (Clear a
watch expression), 137

D

D (Direction flag), 122
D,DB,DW,DD,DS,DL,DT

commands (Display
memory), 127

Data
display, 26-29
edit, 26-29

DATA command (Change to
display another data
window), 139

Data window, 26-29
change format, 138
display another, 139
set size, 217
toggle, 217

Data window
expression,display or assign,
230

Deactivate break points, 111
Debug

at source level, 54
DLLs, 52
DOS loadable device

driver, 61
DOS T&SR, 59
DOS VMs, 63

mode commands, 198-
205

multiple code segments,
49

multiple programs at
once, 66

register, 85
VxD, 51
Windows device driver,

63
Windows driver, 49
Windows VxD, 65

Debugger customization
commands, 223-245

Default
function keys, 19
initialization file, 19

Default address mode, 75
Define

function keys, 16,37
INIT statement, 17

Device driver,debugging, 63
DEX command (Display or

assign a data window
expression), 230

Direction flag, 122
Disable break points, 111
Diskette contents, 4
Display

back trace history buffer
instructions, 253

classes information, 177
code, 29-33,270,271

INDEX

code window, 29-33
control registers, 149
current source file, 271
current symbol table, 260
data window, 26-29
data window expression,

230
DOS program call stack,

161
export symbols, 263
flags, 23
function key assignments,

227
GDT, 141
global heap, 152
handle information, 174
help information, 131
history, 35
I/O port hooks, 147
IDT, 145
information, 35
instruction bytes, 232
instructions from back

trace history buffer, 253
LDT, 143
local heap, 155
memory, 127
memory map of VM, 171
mixed mode, 29-33,270
module list, 150
output on second monitor,

10
page table information,

166
register window, 23-25
registers, 122
screen colors, 233
Soft-ICE/W version

number, 133
source code, 29-

33,125,270
source file, 271
symbols, 265
system information, 140-

173
tab settings for source

display, 236
task list, 159
TSS, 147
unassembled code, 125
virtual addresses that

match a physical
address, 170

virtual device drivers
map, 157

virtual machines
information, 179

VxD callable routines'
names and addresses,
163

VxD map, 157
watch expressions, 25
Windows classes

information, 177
Windows global heap,

152,157

INDEX

Windows handle
information, 174

Windows local heap, 155
Windows messages'

names and message
numbers, 165

Windows module list, 150
Windows task call stack,

161
Windows task list, 159

Display commands, 120-140
Display history,allocate extra

memory for, 7
Display window,clear, 248
DLL, debug symbolically, 52
DOS loadable device

driver,debug, 61
DOS program

load, 53
DOS program call

stack,display, 161
DOS T&SR,debug, 59
DOS VMs

addresses, 80
debugging, 63

E

E,EB,EW,ED,ES,EL,ET
commands (Edit memory),
129

EC command (Enter or exit
the code window), 220

Edit
break points, 114
command line, 33
commands, 120-140
data window, 26-29
flags, 23
function key assignments,

227
memory, 129
register window, 23-25

EGA controller, 12
Enable break points, 112
Enter

code window, 220
trace simulation mode,

251
Error messages, 283-293
Execution break point

clear, 97
exploring, 68
set, 97

Exit
code window, 220
from the Soft-ICE/W

screen, 187
trace simulation mode,

251
EXIT command (Force an

exit of current program),
195

EXP command (Display
export symbols), 263

Exp switch, 8

INDEX

Exploring
back trace history, 57
execution break points, 68
range break points, 57
single stepping, 68
Windows internals, 67
Windows/DOS transition,

71
Export symbols,display, 263
Exports, add to list, 8
Expression definition, 37
Extra memory,allocate, 18

F

F command (Fill memory
with data), 208

FILE command (Change or
display the current source
file), 271

Fill memory with data, 208
FIXED LOADONCALL

attribute, 50
FKEY command (Show and

edit the function key
assignments), 227

Flags,display or change,
23,122

FLASH command (Restore
Windows screen during P
and T), 246

Force
exit of current program,

195
interrupt to occur, 196

FORMAT command (Change
the format of the data
window), 138

Function keys
default assignments, 19
define, 16,37
display assignments, 227
edit assignments, 227

Functional command list,
297-302

G

G command (Go to an
address), 188

GDT command (Display the
Global Descriptor Table),
141

GENINT command (Force an
interrupt to occur), 196

Global Descriptor Table
display, 141

Global heap display, 152
Go to

address, 188
address in trace

simulation mode, 257
current cursor line, 193

INDEX

H

H command (Display help
information), 131

Handle information display,
174

Hard system boot, 197
Hardware port

input a value from, 184
output a value to, 185

Hardware requirements, 5
HBOOT command (Do a

hard system boot), 197
HEAP command (Display the

Windows global heap), 152
Help information, 131
Help line, 36
HERE command (Go to the

current cursor line), 193
Hot key sequence,change,

46,225
hst switch, 7
HWND command (Display

information on Windows
handles), 174

I

I (Interrupt flag), 122
I,IB,IW commands (Input a

value from an I/O port), 184
I/O port

break point, 92

commands, 173-185
display hooks, 147
input a value from, 184
output a value to, 185

I1HERE command (Pop up
on embedded INT 1
instructions), 201

I3HERE command (Pop up
on INT 3 instructions), 203

IDT command (Display the
Interrupt Descriptor Table),
145

Include files,source code, 50
Indirection operator, 40
INIT statement, 17
Initialization

define string, 17
file, 15-20
file,default contents, 19
keywords, 15

Input from I/O port, 184
Install Soft-ICE/W, 6
Instruction bytes,display, 232
INT 1

pop up on, 201
replace with NOP, 204

INT 3
pop up on, 203
replace with NOP, 204

INT30H instructions, 73
Interrupt

break point, 94
force to occur, 196

INDEX

Interrupt Descriptor
Table,display, 145

Interrupt flag, 122

L

LDT addresses, 80
LDT command (Display the

Local Descriptor Table),
143

Level transitions,protected
mode, 73

LHEAP command (Display
the Windows local heap),
155

Line numbers, 39
LINES command (Change

number of lines of Soft-
ICE/W display), 241

Lines of display,change, 241
Link switches, 47
List

all break points, 113
previously set break

points, 117
Load

applications for
debugging, 47-54

programs, 47-54
Soft-ICE/W, 7-15
switch, 8
symbols, 47-54

LOAD statement, 18

LOADX statement, 18
Loadx switch, 8
Local Descriptor Table

display, 143
Local heap display, 155
Locate current instruction in

code window, 222

M

M command (Move data),
209

Manipulate break points, 110-
118

MAP command (Display
memory map of the current
Virtual Machine), 171

Mask definition, 85
Memory

access break point, 84
assemble code in, 211
compare data in, 210
display, 127
edit, 129
fill with data, 208
move data in, 209
range break point, 88
search for data, 206

Memory map of current
VM,display, 171

Mixed mode,display, 29-33
MOD command (Display the

Windows module list), 150

INDEX

Modify break points, 114
Module list,display, 150
Move data, 209
MSYM.EXE, 47
Multiple code

segments,debugging, 49
Multiple programs,debug, 66

N

NMI (Non-Maskable
Interrupt), 196

Notational conventions, 42

O

O (Overflow flag), 122
O,OB,OW commands

(Output a value to an I/O
port), 185

Operators, 39
Output to I/O port, 185
Overflow flag, 122

P

P (Parity flag), 122
P command (Execute one

program step), 192
PAGE command (Display

page table information), 166
Page table

information,display, 166
Parity flag, 122

Pause after each screen, 224
PAUSE command (Pause

after each screen), 224
PHYS command (Display all

virtual addresses that match
a physical address), 170

Physical addresses
description, 77
find, 166

Physical memory addresses,
79

Point-and-shoot break point,
56,97

Pop up
on embedded INT 1

instructions, 201
on INT 3 instructions, 203
set key sequence, 225
Soft-ICE/W, 45

Pre-loading symbols and
source files, 18

Print
contents of the screen,

243
set output port, 244

Print-Screen command (Print
the contents of the screen.),
243

PRN command (Set printer
output port), 244

Processor modes, 74
Program screen,restore, 247
Program step, 192

INDEX

Program step in trace
simulation mode, 256

Protected mode level
transitions, 73

R

R command (Display or
change register values), 122

Range break point, 90
Range break points

exploring, 57
set, 88

Reboot system, 197
Redirect console to serial

terminal, 237
Register window, 23-25

toggle, 214
Registers

change values, 122
display, 23-25,122
edit, 23-25

Relocate symbol base, 268
Replace embedded int 1 or 3

with a NOP, 204
Requirements, 5
Reset back trace history

buffer, 258
Restore

program screen, 247
Windows screen during P

and T, 246

RS command (Restore
program screen), 247

Run Soft-ICE/W on second
computer, 11

S

S (Sign flag), 122
S command (Search memory

for data), 206
Screen

control commands, 245-
250

display colors, 233
dump, 243
redirect output, 249
set colors, 233
set pause, 224

Screen,Soft-ICE/W, 22-37
Search

current source file, 272
memory for data, 206

Second
computer, 11,237
monitor, 10,249

Select previously set break
points, 117

SERIAL command (Redirect
console to serial terminal),
237

Serial terminal, 237
SERIAL.EXE program(Sets

up second PC), 237

INDEX

Set
action after break point is

reached, 199
alternate key sequence,

225
break point in VxDs, 72
break points, 83-103
code window size, 215
data window size, 217
hot key sequence, 225
point-and-shoot break

point, 56
pop up key sequence, 225
printer output port, 244
screen colors, 233
symbol, 265
tab settings for source

display, 236
Show and edit function key

assignments, 227
SHOW command (Display

instructions from back trace
history buffer), 253

Sign flag, 122
Single step

in trace simulation mode,
255

one instruction, 190
Single stepping,exploring, 68
Soft-ICE for DOS

new features in 2.2, 275
requirements, 276
with Soft-ICE/W, 273-

276
Soft-ICE/W

change number of lines of
display, 241

default function keys, 19
description, 2
diskette contents, 4
exit from screen, 187
experimenting, 43-47
hardware requirements, 5
initialization file, 15-20
install, 6
load, 7-15
pop up, 45
requirements, 5
run on second computer,

11
screen, 22-37
switches, 7-15
version number, 133
windows, 22-37
with Soft-ICE, 273-276
with Windows debugging

kernels, 276-283
Software requirements, 5
Source

allocate memory for, 8
browse through, 56
display, 29-33,125

Source file
change or display current,

271
pre-load, 18

INDEX

search current, 272
Source level debugging, 54
SRC command (Toggle

between displaying source,
mixed and code), 270

SS command (Search current
source file for a string), 272

STACK command (Display
the call stack), 161

Sticky break points, 82
Super-VGA controller, 12
Switches

/exp, 8
/hst, 7
/load, 8
/loadx, 8
/sym, 8
/tra, 7
compile, 47
link, 47
WINICE.EXE, 7-15

SYM command (Display or
set symbol), 265

sym switch, 8
Symbol and source line

commands, 259-273
Symbol file, 47
Symbol table,display current,

260
Symbol,relocate base, 268
Symbols

allocate memory for, 8
debug with, 47-67

display, 265
display export, 263
load, 47-54
pre-loading, 8,18
set, 265

SYMLOC command
(Relocate the symbol base),
268

T

T command (Trace one
instruction), 190

T parameter of BPR, 88,105-
106

T parameter of BPRW, 90
Tab settings,display or set,

236
TABLE command (Change

or display the current
symbol table), 260

TABS command (Display or
set the tab settings for
source display), 236

TASK command (Display the
Windows task list), 159

Task list display, 159
Task state segment

display, 147
Toggle

code window, 215
data window, 217
register window, 214

INDEX

source, mixed, and code,
270

watch window, 219
tra switch, 7
TRACE command (Enter or

exit trace simulation mode),
251

Trace one instruction, 190
Trace simulation mode

enter, 251
exit, 251
go to an address in, 257
program step in, 256
single step in, 255

Transfer control commands,
185-198

TSS command (Display task
state segment and I/O port
hooks), 147

TW parameter of BPR,
88,106-107

TW parameter of BPRW, 90
Two monitors, 249

U

U command (Unassemble
instructions), 125

Unassemble instructions, 125
Utility commands, 205-213

V

VCALL command (Display
the names and addresses of
VxD callable routines), 163

VER command (Display
Soft-ICE/W version
number), 133

VIDMODE.EXE, 12
Virtual address,find, 166,170
Virtual addresses,calculating,

76
Virtual device drivers map

display, 157
Virtual Machine

current addresses, 78
display memory map, 171

Virtual machine information,
179

VM command (Display
information on virtual
machines), 179

VxD
callable routines,display

names and addresses,
163

debugging, 65
map display, 157
prepare for debugging, 51

VXD command (Display the
Windows VxD map), 157

INDEX

W

Watch expressions
add, 134
clear, 137
display, 25

Watch number, 134
Watch window, 25

toggle, 219
WATCH,WATCHB,WATC

HW,WATCHD,WATCHS,
WATCHL,WATCHT
commands (Add a watch
expression), 134

WC command (Toggle/set the
size of the code window),
215

WD command (Toggle/set
the size of the data
window), 217

Window
code, 29-33
command, 33-37
data, 26-29
register, 23-25
watch, 25

Windowing commands, 213-
223

Windows
addresses, 78
addressing modes, 74
debug

device driver, 63

VxD, 65
display

classes information,
177

global heap, 152
handle information,

174
local heap, 155
messages names, 165
messages numbers,

165
module list, 150
task call stack, 161
task list, 159
VxD map, 157

driver,prepare for
debugging, 49

internal components
symbols, 19

internals,exploring, 67
load program, 52
messages break point, 99
processor modes, 74
program addresses, 78
restore screen during P

and T, 246
VxD addresses, 79

Windows of Soft-ICE/W, 22-
37

Windows program break
point, 90

Windows/DOS
transition,exploring, 71

INDEX

Winice
running, 7-15

WINICE.DAT, 15-20
default initialization file,

19
WINICE.VID, 12
WLDR.EXE, 47-54

install icon, 52
loading DOS program, 53
loading Windows

program, 52
syntax, 53

WLOG.EXE, 35
WMSG command (Display

the names and message
numbers of Windows
messages), 165

WR command (Toggle the
register window), 214

WW command (Toggle the
watch window), 219

X

X command (Exit from the
Soft-ICE/W screen), 187

XG command (Go to an
address in trace simulation
mode), 257

XP command (Program step
in trace simulation mode),
256

XRSET command (Reset the
back trace history buffer),
258

XT command (Single step in
trace simulation mode), 255

Z

Z (Zero flag), 122
ZAP command (Replace

embedded int 1 or 3 with a
NOP), 204

Zero flag, 122

Notes

	Chapter 1 Introduction
	1.1 Product Description
	• source level debugging of Windows applications, Windows device drivers, Windows VxD's, DOS applications, DOS T&SR's, DOS loadable drivers.
	• real time break points on memory reads/writes, port reads/writes, memory ranges, and interrupts.
	• break points on Windows messages.
	• back trace history ranges.
	• full screen windowed user interface.
	• the ability to display internal Windows information including VxD map, Windows heap, local heap, exports from Windows USER, GDI and KERNEL, etc.
	• a window that can pop up at any time.
	• the ability to debug any code, including the Windows kernel itself.
	• user-friendly dynamic help.
	• the ability to watch variables and multiple data windows.
	• programmable function keys.

	1.2 Product Philosophy
	1.3 Soft-ICE/W Diskette
	1.4 Soft-ICE/W Requirements
	• Microsoft Windows version 3.0 or later.
	• A PC capable of running Windows in enhanced mode (a 386 or 486 processor) with at least 256K additional memory over and above Windows memory requirements.
	• The Soft-ICE/W display can be on a serial terminal, a secondary monochrome monitor, or the Windows monitor itself if Windows is run in CGA, EGA, VGA or most super-VGA modes. If you have an 8514 monitor with a VGA as a secondary monitor, Soft-ICE/W can use the VGA as its alternate display.
	Note
	Since Soft-ICE/W does not use the DOS file system, it must keep all symbols and source in memory. The actual memory requirement for Soft-ICE/W depends on the number of symbol tables and source files that will be loaded at once.

	1.5 Soft-ICE/W Installation
	Steps to a quick start:
	If you are running Windows with most standard VGA drivers, you can simply enter WINICE on the DOS command line to load Soft-ICE/W, then refer to chapter 3 for details on using Soft-ICE/W. (See page 17 for detail on using Soft-ICE/W with other video adapters.)

	1.6 Loading Soft-ICE/W
	winice [/HST d] [/tra d] [/sym d] [/load name] [[path]WIN.COM [WIN-parameters]]
	/HST If /HST (history memory) is specified, Soft-ICE/W will allocate extra memory for the command windows display history. The number following the /HST switch is the amount in K of extra memory to allocate. This number is always entered in decimal. Soft-ICE/W automatically allocates 8K for the history buffer. Anything specified by the /HST switch is added to the 8K. Having a large amount of history memory is especially useful when used in conjunction with the WLOG utility to dump large amounts of data to a text file.
	/tra If /tra (trace buffer memory) is specified, Soft-ICE/W will allocate extra memory for the back trace history buffer. The number following the /tra switch is the amount in K of extra memory to allocate. This number is always entered in decimal. Soft-ICE/W automatically allocates 8K for the back trace history buffer. Anything specified by the /tra switch is added to the 8K.
	/sym If /sym (symbol table memory) is specified, Soft-ICE/W will allocate memory for source and symbols. The number following the /sym switch is the amount in K of memory to allocate. This number is always entered in decimal. Soft-ICE/W automatically allocates 0K for symbol table memory.
	/load If /load (pre-load symbol tables and source files) is specified, Soft-ICE/W will pre-load the symbol table and referenced source files from the specified program file. The name following the /load switch should be the complete path and file name to a program that contains a symbol table. This switch is most useful when debugging Windows drivers, Windows DLL's, VxDs, DOS loadable drivers or DOS T&SRs. Symbol information for all other types of programs is loaded with WLDR.EXE.
	/loadx The /loadx switch is the same as the /load switch except just symbols are loaded, not source files.
	/exp Adds exports from a specified DLL or Windows application to the Soft-ICE/W export list. This allows you to symbolically access these exported symbols.
	Note
	All of the above switches can also be specified in the WINICE.DAT file so they do not have to be repeatedly given on the command line. The /HST, /SYM and /TRA switches on the command line override whatever is in the WINICE.DAT file.
	1.6.1 Using a Second Monitor for Output
	Note
	ALTSCR ON can also be entered from the Soft-ICE/W command window if you wish to switch Soft-ICE/W output to your second monitor.
	XE "8514 monitor"§
	Note

	If you have an 8514 monitor with a VGA as a secondary monitor, Soft-ICE/W can use the VGA as its alternate display. To do this ALTSCR should be OFF. Unlike a monochrome monitor, the Soft-ICE/W output will only be displayed when Soft-ICE/W is popped up.

	1.6.2 Running Soft-ICE/W on a Second Computer
	1.6.3 Using a CGA, EGA or Super-VGA Controller
	• Run Soft-ICE/W from command line by entering WINICE.
	• Select the VIDMODE icon or select File followed by Run from the Windows program manager. Then enter drive:path-nameVIDMODE.EXE.
	• Check the desired VIDMODE check boxes, then select OK.
	Warning
	When either of VIDMODE's check boxes are checked, there is a danger that VIDMODE will hang Windows. Take care to shut down any Windows applications with work in progress before running VIDMODE with boxes checked.
	Note

	You must run VIDMODE.EXE each time you reconfigure Windows to a different VGA mode.

	1.6.4 Alternatives if VIDMODE.EXE Fails
	Note
	For the benefit of experienced display driver developers, we have included utilities to convert a .VID file to ASCII, and to convert the ASCII file back to the .VID format. These utilities (A2V.EXE & V2A.EXE) can be used by one with VGA expertise at the port level to edit the output from VIDMODE.EXE.

	1.7 WINICE.DAT Initialization File
	1.7.1 Defining Function Keys
	Fn = "string" Defines function key n
	SFn = "string" Defines Shift + function key n
	CFn = "string" Defines Ctrl + function key n
	AFn = "string" Defines Alt + function key n
	n Decimal number from 1 to 12.
	string One or more Soft-ICE/W commands within quotes. A ';' embedded in the command string represents the Enter key. Putting the '^' in front of a command makes the command invisible.

	1.7.2 The Soft-ICE/W Initialization String
	Note
	Always place new items in the INIT statement prior to the X;. The X; exits from Soft-ICE/W, and if the entries are made after X;, they will not be executed until you pop up Soft-ICE/W for the first time.

	1.7.3 Allocating Extra Memory
	1.7.4 Pre-loading Symbols and Source Files
	1.7.5 Default WINICE.DAT Initialization File
	Note
	You must alter the default WINICE.DAT file if you will be using a secondary monochrome monitor, or a second computer attached by a serial cable, as your Soft-ICE/W display.

	Chapter 2 User Interface
	2.1 Soft-ICE/W Screen
	Register Window Display/Edit the current state of the registers and flags.
	Watch Window Display the value of any variables that are being watched with the WATCH command.
	Data Window Display/Edit memory.
	Code Window Display unassembled instructions and/or source code.
	Command Window Enter user commands and display information.

	2.2 Register Window
	Tab Position to the beginning of the next register field.
	Shift Tab Position to the beginning of the previous register field.
	Enter Accept changes and exit edit register mode.
	Esc Exit edit register mode. The register the cursor is currently on will NOT be changed, but other previously modified registers will be changed.
	Insert Toggle the value of a flag when the cursor is positioned in the flags field.
	Arrow keys Move the cursor left and right and up and down in the register window.

	2.3 Watch Window
	watch number This is a number from 0 to 7 that identifies the watch variable index. This number is used when clearing watch variables using the CWATCH command.
	expression This is the actual expression that was typed on the WATCH command. This expression is reevaluated every time the watch window is displayed. If the expression is NOT a symbol and no segment is specified, the following defaults are used:
	If it's IP or EIP, CS is used.
	If it's BP, EBP, SP or ESP, SS is used.
	Anything else uses DS, including just hexadecimal addresses.
	location This is the hexadecimal address of the watch variable.
	value This is the current value of the variable being watched. This field can display the following data types depending on the type of watch set:
	Byte hexadecimal
	Word hexadecimal
	Dword hexadecimal
	Short Real (4 byte real)
	Long Real (8 byte real)
	10-Byte Real

	2.4 Data Window
	VM The displayed data is from a segment from a virtual machine.
	PROT The displayed data is from a protected mode selector.
	• A symbol name followed by the hexadecimal offset from the symbol name.
	• A VxD name followed the by the hexadecimal offset from the beginning of the VxD.
	• A Windows module name followed by a type, if the data segment is part of the Windows heap.
	• The owner name of the data segment if it is part of a virtual machine.
	• If the location does not have an associated symbol, this field will be blank.

	Tab Toggle position between numeric and ASCII areas.
	Shift Tab Position cursor to the beginning of the previous data field (previous byte, word, or dword in hexadecimal mode, previous character in ASCII mode).
	Shift F3 Change the format of the data window. Pressing this key combination cycles between the byte, word, dword, short real, long real and 10-byte real formats.
	Enter Accept changes and exit edit data mode.
	Esc Exit edit data mode. The data field the cursor is currently on will NOT be changed, but other previously modified data fields will be changed.
	Arrow keys Move the cursor left and right and up and down in the data window. They are also used to scroll through memory. The PageUp and PageDn keys can be used to scroll the data window a page at a time.
	Alt PageUp Scroll data window down one page.
	Alt PageDn Scroll data window up one page.
	Alt UpArrow Scroll data window down one line.
	Alt DownArrow Scroll data window up one line.

	2.5 Code Window
	Source If source code is available, the actual source file can be displayed in the code window.
	Mixed In mixed mode, both the actual source lines and the disassembled instructions are displayed. Each source line is followed by its assembler instructions.
	Code In code mode, only the disassembled instructions are displayed.
	Location This is the hexadecimal address of the instruction. If there is a public code symbol for this location, it is displayed on the line above this instruction.
	Code bytes These are the actual hexadecimal bytes of the instruction. The default is to suppress the code bytes since they are usually not needed. These bytes can be displayed using the CODE command
	Instruction The disassembled mnemonics of the instruction. This is the current assembly language instruction. If any of the memory address parts of the instruction match a symbol, the symbol will be displayed instead of the hexadecimal address.
	VM The displayed code segment is from a virtual machine.
	PROT16 The displayed code is from a 16-bit protected mode selector.
	PROT32 The displayed code is from a 32-bit protected mode selector.
	• If source code is displayed on the screen, the name of the current source file will be displayed.
	• A symbol name followed by the hexadecimal offset from the symbol name. This corresponds to the top line displayed in the code window.
	• A VxD name followed by the hexadecimal offset from the beginning of the VxD.
	• A Windows module name followed by the segment number in parenthesis, if the code segment is part of the Windows heap.
	• The owner name of the code segment if it is part of a virtual machine.
	• If the location does not have a preceding symbol, this field will be blank.

	Ctrl PageUp Scroll code window down one page.
	Ctrl PageDn Scroll code window up one page.
	Ctrl UpArrow Scroll code window down one line.
	Ctrl DownArrow Scroll code window up one line.

	2.6 Command Window
	2.6.1 Line Editing
	Home Move cursor to column 0 of command line.
	End Move cursor past the last character of the command line.
	Insert Toggle insert mode. When in insert mode the cursor is displayed as a block cursor. The character entered is inserted at the current cursor position and the end of the line is shifted to the right by one. When not in insert mode, the character entered overwrites the character at the current cursor position.
	Delete Delete the character at the current cursor position and shift the end of the line to the left by one.
	Bksp Destructive backspace.
	Esc Cancel command line.
	Arrows The left and right arrow keys move the cursor within the command line.

	2.6.2 Command History
	UpArrow Get the previous command from the command history buffer.
	DownArrow Get the next command from the command history buffer.
	Shift UpArrow Get the previous command from the command history buffer
	Shift DownArrow Get the next command from the command history buffer.

	2.6.3 Information Display
	2.6.4 Display History
	Shift UpArrow Scroll the display history down by one line.
	Shift DownArrow Scroll the display history up by one line.
	PageUp Scroll the display history down by one page.
	PageDn Scroll the display history up by one page.

	2.6.5 Help Line
	• When the typed characters don't specify a complete command, all valid commands that start with the typed characters are displayed.
	• When the typed characters exactly match a command, a description of that command is displayed.
	• When a space is entered after a command, the syntax of that command is displayed.

	2.6.6 Command Completion
	2.6.7 Function Keys

	2.7 Command Syntax
	Numbers Numbers are entered in hexadecimal and can be from 1 to eight characters in length (32 bit maximum).
	Segments Any number or register followed by a colon is interpreted as a segment. Soft-ICE/W will interpret this segment according the current code mode. If the current popup mode is from a virtual machine, the value will be treated as a real mode segment. If the current popup mode is from protected mode, the value will be treated as a selector. This behavior can be overridden by preceding the segment with an override operator. Use & for segments and # for selectors.
	Registers Registers can be used in place of numbers in an expression. Soft-ICE/W will then use the contents of the registers for these values. The following register names may be used in an expression:
	AL, AH, AX, EAX, BL, BH, BX, EBX
	CL, CH, CX, ECX, DL, DH, DX, EDX
	SI, ESI, DI, EDI, BP, EBP, SP, ESP
	DS, ES, SS, CS, FS, GS
	IP, EIP or FL
	If the (E)SP or (E)BP registers are used and no segment is specified, Soft-ICE/W will automatically use the SS segment. If the (E)IP register is used without specifying a segment, Soft-ICE/W will automatically use the CS segment. For all other registers, Soft-ICE/W will use DS. For plain hexadecimal numbers, Soft-ICE/W will continue to use whatever segment/selector is currently displayed in the data window.

	XE ". symbol"§XE "Line numbers"§Line numbers A decimal number preceded by a '.' (period) will be interpreted as a source file line number. It will be converted to the correct segment:offset address.
	Symbols Symbols are case-insensitive ASCII strings representing the address of a symbol. Soft-ICE/W recognizes the following symbols:
	• All symbols loaded by WLDR or from WINICE.DAT.
	• All exported symbols from USER.EXE, GDI.EXE and KERNEL.EXE.
	• All VxD names.
	• The names of all exported VxD calls.
	• The names of all Windows messages in the range 0 to 400h.

	Operators Soft-ICE/W recognizes the following operators:
	+, -, *, /
	All operators are of equal precedence and are evaluated left to right.
	Soft-ICE/W also recognizes the following special operators:

	2.8 Notational Conventions Used in this Manual

	Chapter 3 Using Soft-ICE/W
	3.1 Experimenting with Soft-ICE/W
	3.1.1 Popping Up Soft-ICE/W
	Note
	When you pop up Soft-ICE/W, you will typically see assembly language instead of source code displayed in the Soft-ICE/W code window. This is because Soft-ICE/W can pop up at whatever point the instruction pointer happened to be within Windows or MS-DOS.

	3.1.2 Changing the Hot Key Sequence

	3.2 Loading Systems Level Symbols
	Note
	If you are loading WIN386.SYM (built for the debugging kernel only), you may want to place the command 'TABLE AUTOOFF' in the INIT statement of WINICE.DAT. Otherwise, almost every time you pop up Soft-ICE/W you will switch to the WIN386.SYM symbol table.

	3.3 Loading Programs for Debugging
	3.3.1 Preparing a Program for Debugging
	3.3.2 Preparing a Windows Driver for Debugging
	3.3.2.1 Multiple Code Segments In Module
	3.3.2.2 Source Code In Include Files
	3.3.2.3 Fixed LOADONCALL Segments

	3.3.3 Preparing a VxD for Debugging
	3.3.4 WLDR Program and Symbol Loader
	3.3.5 Loading a Windows Program for Debugging
	Note
	If you are debugging a program frequently you can select the make icon option to create an icon that will quickly load a single program. You can then go to File Properties to add DLL names to the command line if desired.
	Note

	If your program has too many source files to fit into symbol memory, you can instruct WLDR to selectively load source files by using a .SRC file. See page 63 for more information.

	3.3.6 Loading a DOS Program for Debugging
	1. Loads program symbols and source into the reserved symbol memory.
	2. Loads program-name.EXE into memory at the location it would have loaded if it had been loaded directly from the DOS prompt.
	3. Brings up Soft-ICE/W with the instruction pointer at the first instruction of your program.
	If the extension .EXE or .COM is specified, then only steps 2 and 3 will be performed, which loads only the program.

	3.4 Debugging a Program at Source Level
	Note
	If your program has too many source files to fit into symbol memory, you can instruct WLDR to selectively load source files with a .SRC file. See page 63 for more information.
	3.4.1 Special Note for Debugging C Programs
	3.4.2 Single Stepping and Tracing
	3.4.3 Point-and-Shoot Break Points
	3.4.4 Navigating Through Your Source Files
	3.4.5 Range Break Points
	3.4.6 Back Trace History

	3.5 Debugging a DOS T&SR in a Virtual Machine
	Hint
	If you are stopping at an embedded INT 1 or INT 3 in your T&SR you can usually locate the symbols by entering SYMLOC CS.
	Note

	DOS versions prior to 5.0 or environments with a NetWare shell may not display the name of your T&SR if your T&SR has released its environment. You must determine which entry is the main body of the T&SR by its size or ordering with other T&SRs loaded.
	Note

	Soft-ICE/W cannot debug your T&SR's init code or portions of the code that execute before Windows is run. Use Soft-ICE for DOS to debug these portions.

	3.6 Debugging a DOS Loadable Device Driver
	Hint
	If you are stopping at an embedded INT 1 or INT 3 in your driver you can usually locate the symbols by entering SYMLOC CS.
	Note

	Soft-ICE/W cannot debug your DOS loadable driver's init code or portions of the code that execute before Windows is run. Use Soft-ICE for DOS to debug these portions.

	3.7 Hints for System Level Debugging in DOS VMs
	3.8 Debugging a Windows Device Driver
	1. Place a LOAD statement in the WINICE.DAT initialization file or use the /LOAD switch on the WINICE.EXE command line. The syntax for the LOAD statement is:
	LOAD = driver-file-name
	2. Place an INT 1 or INT 3 instruction at the start of your driver, or the first instruction that you would like to debug. Windows C programmers can call the Windows API call DebugBreak() to perform an INT 3.
	3. Place the I1HERE ON or I3HERE ON command in your WINICE.DAT initialization file.
	Note
	Your driver is loaded by Windows from the SYSTEM.INI file just as if you were not debugging.

	3.9 Debugging a Windows VxD
	1. Place an INT 1 instruction in your VxD at the point you want to Soft-ICE/W to pop up. You must also place the command I1HERE ON in the INIT statement of the WINICE.DAT initialization file. This will cause Soft-ICE/W to pop up when the INT 1 instruction is executed. If you need to eliminate the INT 1 instruction so you don't continue popping up there, you can use the ZAP command to replace the INT 1 with NOP instructions before debugging.
	2. Remove the X command from the INIT string in WINICE.DAT. When Soft-ICE/W pops up, you can set a break point in your code by using the VxD map, and/or with symbols if you preloaded symbols.
	Note
	Your VxD is loaded by Windows from the SYSTEM.INI file just as if you were not debugging.
	Note

	You can use Soft-ICE for DOS to debug the real mode initialization of your VxD.

	3.10 Debugging Multiple Programs At Once
	3.11 Exploring Windows Internals with Soft-ICE/W
	3.11.1 Single Stepping and Execution Break Points
	3.11.2 Exploring the Windows/DOS Transition
	3.11.3 Setting Break Points in VxD's
	3.11.4 Protected Mode Level Transitions

	3.12 Memory Addresses in Windows
	3.12.1 Different Modes of Enhanced Windows
	3.12.1.1 16-Bit Protected Mode
	3.12.1.2 32-Bit Protected Mode
	3.12.1.3 8086 Virtual Address Mode

	3.12.2 Overriding the Default Soft-ICE/W Addressing Mode
	& — Force address to be an 8086 virtual mode address.
	# — Force address to be a protected mode address. (Soft-ICE/W determines whether it is a 16-bit or 32-bit protected address from the attributes in the LDT or GDT entry for this selector).

	3.12.3 Virtual Addresses
	PHYS B8000
	3.12.3.1 Current Virtual Machine
	3.12.3.2 Windows and Windows Programs
	3.12.3.3 Physical Memory
	3.12.3.4 Windows VxD's
	3.12.3.5 Windows Programs and DOS VM's
	3.12.3.6 LDT Addresses

	Chapter 4 Using Break Points Commands
	4.1 Introduction
	4.2 Setting Break Points
	BPM, BPMB,
	BPMW, BPMD Set break point on memory access or execution
	BPR Set break point on memory range
	BPRW Set multiple range break points on Windows program or code segment.
	BPIO Set break point on I/O port access
	BPINT Set break point on interrupt
	BPX Set/Clear break point on execution
	BMSG Set break point on Windows message
	CSIP Set CS:EIP (instruction pointer) range qualifier
	size B, W, or D.
	B -- Byte
	W -- Word
	D -- Double Word
	The size is actually a range covered by this break point. For example, if double word is used, and the third byte of the double is modified, then a break point will occur. The size is also important if the optional qualifier is specified (see below).

	verb R, W, RW, or X.
	R -- Read
	W -- Write
	RW -- Reads and Writes
	X -- Execute

	qualifier EQ, NE, GT, LT, or M.
	EQ -- Equal
	NE -- Not Equal
	GT -- Greater Than
	LT -- Less Than
	M -- Mask (a bit mask is represented as a combination of 1's, 0's and X's. X's are don't-care bits.)
	These qualifiers are only applicable to the read and write break points, not the execution break point.

	value A byte, word, or double word value, depending on the size specified.
	debug-reg DR0, DR1, DR2 or DR3.
	start-address Beginning of memory range.
	end-address End point of memory range.
	verb R, W, RW, T or TW.
	R -- Read
	W -- Write
	RW -- Reads and Writes
	T -- Back Trace on Execution
	TW -- Back Trace on Memory Writes

	module-name Any valid Windows Module name that contains executable code segments.
	selector A valid selector in a Windows program.
	verb R, W, RW, T or TW.
	R -- Read
	W -- Write
	RW -- Reads and Writes
	T -- Back Trace on Execution
	TW -- Back Trace on Memory Writes

	Note
	The BPRW command can become very slow when using the T verb to back trace or when using the command in conjunction with a CSIP qualifying range.
	port A byte or word value.
	verb R, W, or RW.
	R -- Read (IN)
	W -- Write (OUT)
	RW -- Reads and Writes

	qualifier EQ, NE, GT, LT, or M.
	EQ -- Equal
	NE -- Not Equal
	GT -- Greater Than
	LT -- Less Than
	M -- Mask (a bit mask is represented as a combination of 1's, 0's and X's. X's are don't-care bits.)

	value A byte, word or dword value.
	Note

	BPIO break points do not go off in 32-bit VxD code.
	int-number Interrupt number from 0 - 5F hex.
	value A byte or a word value.
	Note

	If a BPINT goes off due to a software interrupt instruction in a DOS VM, then single stepping will go into Windows protected mode interrupt handlers, and then eventually control will return to the DOS VM's interrupt handle. If you want to go directly to the DOS VM's interrupt handler after the BPINT has occurred on a software interrupt instruction, enter G @ &0:int-number*4.
	Note

	Windows only accommodates interrupts 0 - 5FH in its interrupt descriptor table. Interrupts above 5FH cause a general protection violation, and are vectored into DOS VM's by Windows as simulated interrupts. If you want to set a break point on an interrupt above 5FH in a DOS VM, then you must set a BPX break point on the first instruction of your interrupt handler. The easiest way to do this is to enter BPX @ &0:int-number*4.
	window-handle A 16-bit handle returned when the window is created.
	message-range Either a single Windows message or a range of Windows messages specified by entering the lower message number followed by a space followed by the higher message number. Message numbers can be specified either in hexadecimal or by using the actual ASCII names of the messages, for example, WM_QUIT.
	L Logs messages to the Soft-ICE/W command window.
	hWnd=xxxx wParam=xxxx lParam=xxxxxxxx msg=xxxx ASCII string
	Note

	To get a list of all valid Windows messages enter the WMSG command with no parameters.
	NOT When NOT is specified, the break point will only occur if the CS:EIP is outside the specified range.
	OFF Turns off CSIP checking.
	start-address Beginning of memory range.
	end-address End point of memory range.
	Windows-module-name If a valid Windows module name is specified instead of a memory range, then the range covers all code areas in the specified Windows module.

	4.3 Back Trace Ranges
	4.3.1 Introduction
	4.3.2 Using Back Trace Ranges Across Code Areas
	4.3.3 Using Back Trace Ranges Across Data
	Note
	Soft-ICE for DOS does not allow back trace ranges over data areas. Soft-ICE for DOS does allow the TW attribute, but this enables "coarse" mode, which Soft-ICE/W does not support.

	4.3.4 Special Notes
	Warning
	Ranges that cover interrupt service routines can stop forward execution of your program, and in some cases cause your program or Windows to overflow its stack. Forward execution stops if the interrupting source is frequent enough to have another interrupt present before the previous interrupt has completed. If the interrupt service routine allows nested interrupts (most Windows internal interrupt service routines allow this), then you can get stack over-flows as well.

	4.3.5 Implementation Details and Caveats

	4.4 Manipulating Break Points
	BD Disable break points
	BE Enable break points
	BL List break points
	BPE Edit break point
	BPT Use break point as a template
	BC Clear break points
	BH Break point history
	list A series of break-numbers separated by commas or spaces.
	* Disables all break points.
	list A series of break-numbers separated by commas or spaces.
	* Enables all break points.
	list A series of break-numbers separated by commas or spaces.
	* Clears all break points.
	UpArrow This positions the cursor one line up. If the cursor is on the top line of the command window the list is scrolled.
	DownArrow This positions the cursor one line down. If the cursor is on the bottom line of the command window, the list is scrolled.
	Insert This key selects the break point at the current cursor line, or deselects it if already selected.
	Enter This key sets all selected break points.
	Esc This key exits break point history without setting any break points.

	Chapter 5 Using Other Commands
	5.1 Display and Edit Commands
	R Display or change registers
	U Unassemble instructions
	D Display memory in the most recently specified format
	DB Display memory in byte format
	DW Display memory in word format
	DD Display memory in double word format
	DS Display memory in short real format
	DL Display memory in long real format
	DT Display memory in 10-byte real format
	E Edit memory in the most recently specified format
	EB Edit memory bytes
	EW Edit memory words
	ED Edit memory double words
	ES Edit memory short reals
	EL Edit memory long reals
	ET Edit memory 10-byte reals
	? or H Display help information
	VER Display Soft-ICE/W version number
	WATCH Add watch on byte variable
	WATCHB Add watch on byte variable
	WATCHW Add watch on word variable
	WATCHD Add watch on double word variable
	WATCHS Add watch on short real variable
	WATCHL Add watch on long real variable
	WATCHT Add watch on 10-byte real variable
	CWATCH Clear watch on expression
	FORMAT Change data window format
	DATA Change data window
	register-name Any of the following:
	AL, AH, AX, EAX, BL, BH,
	BX, EBX, CL, CH, CX, ECX,
	DL, DH, DX, EDX, DI, EDI,
	SI, ESI, BP, EBP, SP, ESP
	IP, EIP, FL, DS, ES, SS, CS
	FS or GS.

	value If register-name is any name other than FL, value is a hex value or an expression. If register-name is FL, value is a series of one or more of the following flag symbols, each optionally preceded by a plus or minus sign:
	O (Overflow flag)
	D (Direction flag)
	I (Interrupt flag)
	S (Sign flag)
	Z (Zero flag)
	A (Auxiliary carry flag)
	P (Parity flag)
	C (Carry flag)

	size B, W, D, S, L, or T.
	B -- Byte
	W -- Word
	D -- Double Word
	S -- Short Real
	L -- Long Real
	T -- 10-Byte Real

	size B, W, D, S, L, or T.
	B -- Byte
	W -- Word
	D -- Double Word
	S -- Short Real
	L -- Long Real
	T -- 10-Byte Real

	data-list List of data objects of the specified size (bytes, words, double words, short reals, long reals, or 10-byte reals) or quoted strings separated by commas or spaces. The quoted string can be enclosed with single quotes or double quotes.
	size B, W, D, S, L, or T.
	B -- Byte
	W -- Word
	D -- Double Word
	S -- Short real
	L -- Long real
	T -- 10-Byte Real

	list This is a list of watch-numbers from 0-7 separated by commas. Watch-numbers are the numbers displayed on the beginning of each line in the watch window.
	* Clear all watch expressions.
	window-number The number of the data window you want to view. This can be 0, 1, 2 or 3.

	5.2 Display System Information Commands
	GDT Display Global Descriptor Table
	LDT Display Local Descriptor Table
	IDT Display Interrupt Descriptor Table
	TSS Display Task State Segment & I/O port hooks
	CR Display control registers
	MOD Display Windows module list
	HEAP Display Windows global heap
	LHEAP Display Windows local heap
	VXD Display Windows VxD map
	TASK Display Windows task list
	STACK Display a call stack
	VCALL Display VxD calls
	WMSG Display Windows messages
	PAGE Display page table information
	PHYS Display all virtual addresses for a physical address
	MAP Display virtual machine memory map
	HWND Display information on Windows handles.
	CLASS Display information on Windows classes.
	VM Display information on virtual machines.
	selector This is the starting GDT selector to display.
	selector value The lower two bits of this value will reflect the descriptor privilege level.
	selector type This can be one of the following:
	selector base Flat virtual base address of the selector
	selector limit Size of this selector
	selector DPL The selector's descriptor privilege level (DPL), which can be either 0, 1, 2 or 3.
	present bit A 'P' or 'NP' indicating whether the selector is present or not present.
	segment attributes One of the following:
	selector This is the starting LDT selector to display.
	selector value The lower two bits of this value will reflect the descriptor privilege level.
	selector type This can be one of the following:
	selector base Flat virtual base address of the selector.
	selector limit Size of this selector.
	selector DPL The selector's descriptor privilege level (DPL), which can be either 0, 1, 2 or 3.
	present bit A 'P' or 'NP' indicating whether the selector is present or not present.
	segment attributes One of the following:
	interrupt-number The starting interrupt-number to display.
	interrupt number 0 - 0FFH.
	interrupt type One of the following:
	address Selector:offset of the interrupt handler.
	selector's DPL	The selector's descriptor privilege level (DPL), which can be either 0, 1, 2 or 3.
	present bit A 'P' or 'NP' indicating whether the entry is present or not present.
	TSS selector value TSS selector number.
	selector base Flat virtual base address of the TSS.
	selector limit Size of the TSS.
	port number The 16-bit port number.
	handler address The 32-bit flat address of the I/O handler. All I/O instructions on the port will be reflected to this handler.
	handler name The symbolic name of the handler. If symbols are available for the VxD, the nearest symbol will be displayed, otherwise the name of the VxD followed by the offset within the VxD will be displayed.
	module handle A 16-bit handle that Windows assigns to each module. It is actually a 16-bit selector of the module database record which is similar in format to the EXE header of the module file.
	module name This is up to eight characters in length.
	file name The full path and file name of the module's executable file.
	FREE If FREE is specified, only heap entries marked as free will be displayed.
	module-name This is the name of the module. If supplied only heap entries belonging to the module are displayed.
	selector This is an LDT selector. Only a single heap entry will be displayed.
	selector or handle In Windows 3.0 this is almost the same thing. Heap selectors all have a dpl of 1 while the corresponding handle is the same selector with a dpl of 2. For example, if the handle was 106H the selector would be 105H. Either of these can be used in an expression. If 106:0 were used in a Soft-ICE/W expression, Soft-ICE/W would convert it to 105:0 when displaying it.
	address The 32-bit flat virtual address.
	size The size of the heap entry in bytes.
	module name The module name of the owner of the heap entry.
	type The type of entry. This can be one of the following:
	Note
	If there is no current LDT, then the HEAP command is unable to display heap information.
	selector This is an LDT data selector.
	offset The 16-bit offset relative to the specified selector base address.
	size The size of the heap entry in bytes.
	type The type of entry. This can be one of the following:
	VxD-name The name of a virtual device driver.
	VxD name Name of the VxD.
	address The flat 32-bit address of the VxD.
	size The length of the VxD. This includes both the code and the data of the VxD group.
	code selector The flat code selector.
	data selector The flat data selector.
	type Either LGRP or IGRP. LGRP is the permanent code and data for the VxD. IGRP is the initialization code and data for the VxD. IGRP addresses are only valid during the three phases of VxD initialization. After initialization is complete, IGRP code and data are discarded.
	task-name The name of the task as displayed by the task command.
	SS:BP The SS:BP of a valid stack frame.
	partial-name A VxD callable routine name or the first few characters of the name followed by '*'. If '*' is the last character of the string then all routines that start with the specified characters will be displayed.
	partial-name A Windows message name or the first few characters of a Windows message name followed by '*'. If '*' is the last character of the string then all the Windows messages that start with the specified characters will be displayed.
	address A virtual address, segment:offset address, or selector:offset address that you wish to know page table information about, including the virtual and physical address.
	length Number of pages to be displayed.
	Technical Note

	In the 386/486 architecture each page directory entry refers to a single page table, and each page table contains 1024 entries. Each entry represents a 4K page, so each page table controls four megabytes of memory.
	physical address If the page directory is being displayed then this is the physical address of the page table that this page director entry refers to. Each page directory entry references one page table which controls 4 megabytes of memory.
	If specific pages are being displayed, then this is the physical address that corresponds to address.
	If length was entered, then the physical addresses for each entry are the physical addresses of start of the page.

	linear address If the page directory is being displayed then this is the virtual address of the page table entry. This is the address you would use in Soft-ICE/W if you wanted to display the page table entry with the D command.
	If specified pages are being displayed, this is virtual address. If length was entered then this is the virtual address of the start of the page.

	attribute This is the attribute of the page directory or page table entry. Valid attributes are:
	type Each page directory entry has a three bit field that can be used by the operating system to classify page tables. Windows classifies page tables into the following six categories:
	physical-address This is an actual memory address that the 386/486 generates after a virtual address has been translated by its paging unit. This is the address that appears on the Computer's BUS and is most important to the programmer when dealing with memory mapped hardware devices like video memory.
	address A segment:offset type address.
	VM id The virtual machine ID. ID1 is the system VM.
	VM handle The 32-bit virtual machine handle.
	CRS pointer The 32-bit client register structure pointer.
	VM address The 32-bit linear address of the virtual machine. This is the "high" address of the virtual machine that is also mapped to linear address 0.
	Note

	Windows may have certain pages of the DOS VM memory mapped out when you enter the MAP command. If this occurs, the output from the MAP command will terminate with a PAGE NOT PRESENT message. Often, just hot-keying out of Soft-ICE/W and right back in will cause Windows to map those pages back in.
	window-level Windows hierarchy number. 0 is the top level, 1 is the next level and so on. The window levels represent a parent child relationship. For example, a level 1 window has a level 0 parent.
	task-name Any currently loaded Windows Task. These names are available with the TASK command.
	Window Handle The window handle is actually an offset into a data segment in USER where information is stored about a window.
	Queue Handle A queue handle is actually a selector of a segment that contains the message queue for a window. A standard message queue can hold up to six messages.
	Queue Owner Task name of the task that owns this queue.
	Class Name Class name or atom of class that this window belongs to.
	Window Procedure Address of the window procedure for this window.
	module-name Any currently loaded Windows Module. Not all Windows Modules have classes registered.
	Class Handle The class handle is actually an offset of a data structure within USER. It is used to refer to windows of this class.
	Class Name Name that was passed when the class was registered. If no name was passed the atom is displayed.
	Owner Module that has registered this window class.
	Window Procedure Address of the window procedure for this window class.
	VM-ID Index number of this virtual machine. These numbers start at 1 and 1 is always assigned to the VM that Windows Apps run in.
	VM Handle The vm handle is actually a flat offset of the data structure that holds information about the VM.
	Status This is a bit mask that shows current state information about the VxD. The values are:
	0001H Exclusive mode
	0002H Runs in background
	0004H In process of creating
	0008H Suspended
	0010H Partially destroyed
	0020H Executing protected mode code
	0040H Executing protected mode app
	0080H Executing 32-bit protected app
	0100H Executing call from VxD
	0200H High priority background
	0400H Blocked on semaphore
	0800H Woke up after blocked
	1000H Part of V86 App is pageable
	2000H Rest of V86 is locked
	4000H Scheduled by time-slices
	8000H Idle - has released time slice
	High Address Alternate address space for VM. This is where a VxD typically accesses VM memory (instead of 0). Note that it is likely for parts of the VxD to be paged out at any one time that you pop up Soft-ICE/W.
	VM-ID Index number of this VxD, starting at 1.
	Client Registers The address of the saved registers of this VM. This address actually points into the level 0 stack for this VM.

	5.3 I/O Port Commands
	I or IB Input from byte I/O port
	IW Input from word I/O port
	O or OB Output to byte I/O port
	OW Output to word I/O port
	size B or W.
	B -- Byte
	W -- Word

	port A byte or word value.
	size B or W.
	B -- Byte
	W -- Word

	port A byte or word value.
	value A byte for a byte port or a word for a word port.

	5.4 Transfer Control Commands
	X Exit from the Soft-ICE/W screen
	G Go to an address
	T Trace one instruction
	P Program step
	HERE Go to the current cursor line
	EXIT Force an exit of current program
	GENINT Force an interrupt to occur
	HBOOT Hard system boot (total reset)
	Note
	While in Soft-ICE/W, pressing the hot key sequence is equivalent to entering the X command.
	count Specifies how many times Soft-ICE/W should single step before stopping.
	interrupt-number A valid interrupt number between 0 and 5FH.

	5.5 Debug Mode Commands
	ACTION Set action after break point is reached
	I1HERE Pop up on embedded INT 1 instructions.
	I3HERE Pop up on INT 3 instructions.
	ZAP Replace embedded INT 1 or INT 3 with NOP
	interrupt-number A valid interrupt number between 0 and 5FH.
	debugger-name The module name of the Windows application debugger you wish to gain control on a Soft-ICE/W break point.

	5.6 Utility Commands
	S Search memory for data
	F Fill memory with data
	M Move data
	C Compare two data blocks
	A Assemble code
	data-list List of bytes or quoted strings separated by commas or spaces. A quoted string can be enclosed with single quotes or double quotes.
	length Length in bytes.
	Note
	The S command ignores pages that are marked not present. This makes it possible to search large areas of address space using the flat data selector (30:).
	data-list List of bytes or quoted strings separated by commas or spaces. A quoted string can be enclosed with single quotes or double quotes.
	length Length in bytes.
	length Length in bytes.
	length Length in bytes.
	• USE16 or USE32 entered on a separate line will cause subsequent instructions to be assembled as 16-bit or 32-bit respectively. If USE16 or USE32 is not specified, the default is the same as the mode of the current CS register.
	• The DB mnemonic is used to define bytes of data directly into memory. The DB mnemonic is followed by a list of bytes and/or quoted strings separated by spaces or commas.
	• The RETF mnemonic represents a far return.
	• Override instructions can optionally be placed on a separate line. For example a code segment override would be entered as "CS:".
	• WORD PTR, BYTE PTR, DWORD PTR, and FWORD PTR are used to determine data size if there is no register argument, for example, MOV BYTE PTR ES:[1234.],1.
	• Use FAR and NEAR to explicitly assemble far and near jumps and calls. If FAR or NEAR is not specified then all jumps and calls are near.
	• Operands referring to memory locations should be placed in square brackets, for example: MOV AX,[1234].

	5.7 Windowing Commands
	WR Toggle the register window
	WC Toggle/set the size of the code window
	WD Toggle/set the size of the data window
	WW Toggle the watch window
	EC Enter/exit the code window
	. Locate current instruction in code window
	window-size A decimal number.
	window-size A decimal number.
	Point-and-shoot break points — Point-and-shoot break points are set with the BPX command. If no parameters are specified with the BPX command, an execution break point is set at the location of the cursor position in the code window. The default function key for BPX is F9.
	Go to cursor line You can set a temporary break point at the cursor line and begin executing with the HERE command. The default function key for HERE is F7.
	Scrolling the code window — The code window can be scrolled while the cursor is in the code window. The scrolling keys (UpArrow, DownArrow, PageUp and PageDn) are redefined while the cursor is in the code window. When the cursor is in the code window the scrolling keys do the following:
	UpArrow Scroll code window up one line.
	DownArrow Scroll code window down one line.
	PageUp Scroll window up one window.
	PageDn Scroll window down one window.

	5.8 Debugger Customization Commands
	PAUSE Pause after each screen
	ALTKEY Set alternate key sequence to invoke Soft-ICE/W
	FKEY Show and edit function key assignments
	DEX Display/assign data window expression
	CODE Display instruction bytes
	COLOR Display/set screen colors
	TABS Display/set tab settings
	SERIAL Redirect console to serial monitor
	LINES Change number of lines of Soft-ICE/W display
	Print-Screen Print contents of screen
	PRN Set printer output port
	letter Any letter (A - Z).
	Hint
	If you want to change your hot key sequence every time you run Soft-ICE/W then you should place the ALTKEY command in the INIT statement of the WINICE.DAT initialization file.
	function-key F1 - F12 (unshifted function key),
	SF1 - SF12 (shifted function key),
	CF1 - CF12 (Ctrl plus function key), or
	AF1 - AF12 (Alt plus function key).

	string The string consists of any valid Soft-ICE/W commands and the special characters (^ and ;). A ^ is placed in the string to make a command invisible. A ; is placed in the string in place of the Enter key.
	data-window-number A number from 0 to 3 indicating which data window to use. This number is displayed on the right hand side of the line above the data window.
	normal This is the foreground/background attribute that is used to display normal text. (default = 07H grey on black)
	bold This is the foreground/background attribute that is used to display bold text. (default = 0FH white on black)
	reverse This is the foreground/background attribute that is used to display reverse video text. (default = 71H blue on grey)
	help This is the foreground/background attribute that is used to display the help line underneath the command window. (default = 30H black on cyan)
	line This is the foreground/background attribute that is used to display the horizontal lines between the Soft-ICE/W windows. (default = 02H green on black)
	normal text grey on black
	bold text white on black
	reverse video text blue on grey
	help line black on cyan
	horizontal line green on black
	tab-setting This can be a number from 1 through 8 that specifies how many columns between tab stops.
	com-port This is a number from 1 to 4 that corresponds to COM1, COM2, COM3 or COM4. The default is COM1.
	baud-rate This is the baud-rate to use for serial communications. The default is to have Soft-ICE/W automatically determine the fastest possible baud-rate that can be used. The allowable rates are listed below:
	1200, 2400, 4800, 9600
	19200, 23040, 28800, 38400
	57000, 115000.

	Note

	If you place the SERIAL command in the INIT statement of the WINICE.DAT initialization file, then SERIAL.EXE must be running on the serial terminal prior to running Soft-ICE/W.
	Note

	If you enter the SERIAL command or the ALTSCR command, Soft-ICE/W changes to 25-line mode automatically. If you change back to your EGA or VGA display and want a larger line mode, you must enter the LINES command again.
	Note

	Since Soft-ICE/W accesses the hardware directly for all of its I/O, Print-Screen works only on printers connected directly to a COM or LPT port. It does not work on network printers.
	x A decimal number between 1 and 4 for COM or a decimal number between 1 and 2 for LPT.

	5.9 Screen Control Commands
	FLASH Restore screen during P and T
	RS Restore the program screen
	CLS Clear the command window
	ALTSCR Change to an alternate screen
	Hint
	If you want to change your Soft-ICE/W display screen every time you run Soft-ICE/W then you should place the ALTSCR command in the INIT statement of the WINICE.DAT initialization file.

	5.10 Back Trace History Commands
	TRACE Enter or exit trace simulation mode
	SHOW Display from back trace history buffer
	XT Single step in trace simulation mode
	XP Program step in trace simulation mode
	XG Go to address in trace simulation mode
	XRSET Reset the back trace history buffer
	start A hexadecimal number specifying the index within the back trace history buffer to start tracing from. An index of 1 corresponds to the newest instruction in the buffer.
	start A hexadecimal number specifying the index within the back trace history buffer to start disassembling from. An index of 1 corresponds to the newest instruction in the buffer.
	length The number of instructions to display.

	5.11 Symbol and Source Line Commands
	TABLE Change or display current symbol table
	EXP Display export symbols
	SYM Display or set symbol
	SYMLOC Relocate the symbol base
	SRC Toggle between source, mixed and code
	FILE Change or display current source file
	SS Search current source file for a string
	partial-table-name A symbol table name or enough of the first few characters to define a unique name.
	AUTOON Key word that turns auto table switching on.
	AUTOOFF Key word that turns auto table switching off.
	$ When '$' is specified, the current table becomes the table where the current instruction pointer is.
	Note
	Tables are not automatically removed when your program exits. If you re-load your program with WLDR.EXE then the symbol table corresponding to the loaded program is replaced with the new one.
	partial-name An export symbol or the first few characters of the name of an export symbol followed by '*'. If '*' is the last character of the string then all the exports that start with the specified characters will be displayed.
	module-name A valid module name. This can be a partial module name. This allows displaying symbols in a particular module. If module-name is specified, it must be followed by !
	! If ! is the only parameter specified, then the modules in this symbol table will be listed.
	symbol-name A valid symbol name. The symbol-name can end with an * (asterisk). This allows searching if only the first part of the symbol-name is known. The , (comma) character can be used as a wild card character in place of any character in the symbol-name.
	value This is a word value that is used if you want to set a symbol to a specific value.
	Note

	If an address is placed between square brackets as a parameter to the SYM command, then the closest symbol above and below the address will be displayed.
	Note

	Only source files that have been loaded into extended memory with WLDR.EXE are available with the FILE command.
	line-number A decimal number.
	string A character string surrounded by quotes.

	APPENDIX A
	Running Soft-ICE/W and Soft-ICE for DOS together.

	APPENDIX B
	Using Soft-ICE/W with the Windows Debugging Kernels
	Warning
	If you are using the VxD debugging version of WIN386.EXE, you must use the /K switch on the WINICE command line or the KBD=TRUE statement in WINICE.DAT initialization file. This is a special switch required for the VxD debugging version of WIN386.EXE. It enables an alternate keystroke handler within Soft-ICE/W. If you do not use this switch then Windows will hang after popping up Soft-ICE/W a few times.

	APPENDIX C
	TROUBLESHOOTING GUIDE

	APPENDIX D
	ERROR MESSAGES

	APPENDIX E
	Alphabetical Command List

	APPENDIX F
	Functional Command List

	INDEX

